• Title/Summary/Keyword: Kinect system

Search Result 185, Processing Time 0.022 seconds

Real-time monitoring system with Kinect v2 using notifications on mobile devices (Kinect V2를 이용한 모바일 장치 실시간 알림 모니터링 시스템)

  • Eric, Niyonsaba;Jang, Jong Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.277-280
    • /
    • 2016
  • Real-time remote monitoring system has an important value in many surveillance situations. It allows someone to be informed of what is happening in his monitoring locations. Kinect v2 is a new kind of camera which gives computers eyes and can generate different data such as color and depth images, audio input and skeletal data. In this paper, using Kinect v2 sensor with its depth image, we present a monitoring system in a space covered by Kinect. Therefore, based on space covered by Kinect camera, we define a target area to monitor using depth range by setting minimum and maximum distances. With computer vision library (Emgu CV), if there is an object tracked in the target space, kinect camera captures the whole image color and sends it in database and user gets at the same time a notification on his mobile device wherever he is with internet access.

  • PDF

Evaluation of Accuracy and Inaccuracy of Depth Sensor based Kinect System for Motion Analysis in Specific Rotational Movement for Balance Rehabilitation Training (균형 재활 훈련을 위한 특정 회전 움직임에서 피검자 동작 분석을 위한 깊이 센서 기반 키넥트 시스템의 정확성 및 부정확성 평가)

  • Kim, ChoongYeon;Jung, HoHyun;Jeon, Seong-Cheol;Jang, Kyung Bae;Chun, Keyoung Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.228-234
    • /
    • 2015
  • The balance ability significantly decreased in the elderly because of deterioration of the neural musculature regulatory mechanisms. Several studies have investigated methods of improving balance ability using real-time systems, but it is limited by the expensive test equipment and specialized resources. Recently, Kinect system based on depth data has been applied to address these limitations. Little information about accuracy/inaccuracy of Kinect system is, however, available, particular in motion analysis for evaluation of effectiveness in rehabilitation training. Therefore, the aim of the current study was to evaluate accuracy/inaccuracy of Kinect system in specific rotational movement for balance rehabilitation training. Six healthy male adults with no musculoskeletal disorder were selected to participate in the experiment. Movements of the participants were induced by controlling the base plane of the balance training equipment in directions of AP (anterior-posterior), ML (medial-lateral), right and left diagonal direction. The dynamic motions of the subjects were measured using two Kinect depth sensor systems and a three-dimensional motion capture system with eight infrared cameras for comparative evaluation. The results of the error rate for hip and knee joint alteration of Kinect system comparison with infrared camera based motion capture system occurred smaller values in the ML direction (Hip joint: 10.9~57.3%, Knee joint: 26.0~74.8%). Therefore, the accuracy of Kinect system for measuring balance rehabilitation traning could improve by using adapted algorithm which is based on hip joint movement in medial-lateral direction.

A performance improvement for extracting moving objects using color image and depth image in KINECT video system (컬러영상과 깊이영상을 이용한 KINECT 비디오 시스템에서 움직임 물체 추출을 위한 성능 향상 기법)

  • You, Yong-in;Moon, Jong-duk;Jung, Ji-yong;Kim, Man-jae;Kim, Jin-soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.111-113
    • /
    • 2012
  • KINECT is a gesture recognition camera produced by Microsoft Corp. KINECT SDK are widely available and many applications are actively being developed. Especially, KIET (Kinect Image Extraction Technique) has been used mainly for extracting moving objects from the input image. However, KIET has difficulty in extracting the human head due to the absorption of light. In order to overcome this problem, this paper proposes a new method for improving the KIET performance by using both color-image and depth image. Through experimental results, it is shown that the proposed method performs better than the conventional KIET algorithm.

  • PDF

Synthesis method of elemental images from Kinect images for space 3D image (공간 3D 영상디스플레이를 위한 Kinect 영상의 요소 영상 변환방법)

  • Ryu, Tae-Kyung;Hong, Seok-Min;Kim, Kyoung-Won;Lee, Byung-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.162-163
    • /
    • 2012
  • In this paper, we propose a synthesis method of elemental images from Kinect images for 3D integral imaging display. Since RGB images and depth image obtained from Kinect are not able to display 3D images in integral imaging system, we need transform the elemental images in integral imaging display. To do so, we synthesize the elemental images based on the geometric optics mapping from the depth plane images obtained from RGB image and depth image. To show the usefulness of the proposed system, we carry out the preliminary experiments using the two person object and present the experimental results.

  • PDF

Study on the Practical 3D Facial Diagnosis using Kinect Sensors (키넥트 센서를 이용한 실용적인 3차원 안면 진단기 연구)

  • Jang, Jun-Su;Do, Jun-Hyeong;Kim, Jang-Woong;Nam, Jiho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.218-222
    • /
    • 2015
  • Facial diagnosis based on quantitative facial features has been studied in many Korean medicine fields, especially in Sasang constitutional medicine. By the rapid growing of 3D measuring technology, generic and cheap 3D sensors, such as Microsoft Kinect, is popular in many research fields. In this study, the possibility of using Kinect in facial diagnosis is examined. We introduce the development of facial feature extraction system and verify its accuracy and repeatability of measurement. Furthermore, we compare Sasang constitution diagnosis results between DSLR-based system and the developed Kinect-based system. A Sasang constitution diagnosis algorithm applied in the experiment was previously developed by a huge database containing 2D facial images acquired by DSLR cameras. Interrater reliability analysis result shows almost perfect agreement (Kappa = 0.818) between the two systems. This means that Kinect can be utilized to the diagnosis algorithm, even though it was originally derived from 2D facial image data. We conclude that Kinect can be successfully applicable to practical facial diagnosis.

Development of Personalized Exercise Prescription System based on Kinect Sensor (Kinect Sensor 기반의 개인 맞춤형 운동 처방 시스템 개발)

  • Woo, Hyun-Ji;Yu, Mi;Hong, Chul-Un;Kwon, Tae-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.593-605
    • /
    • 2022
  • The purpose of this study is to investigate the personalized treacmill exercise analysis using a smart mirror based on Kinect sensor. To evaluate the performance of the development system, 10 health males were used to measure the range of the hip joint, knee joint, and ankle joint using a smart mirror when walking on a treadmill. For the validity and reliability of the development system, the validity and reliability were analyzed by comparing the human movement data measured by the Kinect sensor with the human movement data measured by the infrared motion capture device. As a result of validity verification, the correlation coefficient r=0.871~0.919 showed a high positive correlation, and through linear regression analysis, the validity of the smart mirror system was 88%. Reliability verification was conducted by ICC analysis. As a result of reliability verification, the correlation coefficient r=0.743~0.916 showed high correlation between subjects, and the consistency for repeated measurement was also very high at ICC=0.937. In conclusion, despite the disadvantage that Kinect sensor is less accurate than the motion capture system, Kinect is it has the advantage of low price and real-time information feedback. This means that the Kinect sensor is likely to be used as a tool for evaluating exercise prescription through human motion measurement and analysis.

Realtime 3D Human Full-Body Convergence Motion Capture using a Kinect Sensor (Kinect Sensor를 이용한 실시간 3D 인체 전신 융합 모션 캡처)

  • Kim, Sung-Ho
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.189-194
    • /
    • 2016
  • Recently, there is increasing demand for image processing technology while activated the use of equipments such as camera, camcorder and CCTV. In particular, research and development related to 3D image technology using the depth camera such as Kinect sensor has been more activated. Kinect sensor is a high-performance camera that can acquire a 3D human skeleton structure via a RGB, skeleton and depth image in real-time frame-by-frame. In this paper, we develop a system. This system captures the motion of a 3D human skeleton structure using the Kinect sensor. And this system can be stored by selecting the motion file format as trc and bvh that is used for general purposes. The system also has a function that converts TRC motion captured format file into BVH format. Finally, this paper confirms visually through the motion capture data viewer that motion data captured using the Kinect sensor is captured correctly.

Designed rear sensing black-box system using Kinect (Kinect를 이용한 후방 감지 블랙박스 시스템 설계)

  • Kim, Gyu-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.290-293
    • /
    • 2013
  • Due to vehicle personal injury accident does not, and to analyze the cause and prevention of a variety of devices and technologies are coming out. Among other things, representative of the black box, and rear camera. Despite these advances in technology, and vehicle human injuries continue to occur. The reason for this is that the children, the negligence of the driver or the vehicle is in reverse when a person suddenly passed the back of the vehicle, or the rear of the existing detection system is properly detected was unable to. Therefore, In this paper, we want to design a black box to reveal the cause of the accident, using Kinect to prevent accidents, rear-view camera and rear integrated black box system.

  • PDF

Development of Squat Posture Guidance System Using Kinect and Wii Balance Board

  • Oh, SeungJun;Kim, Dong Keun
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.74-83
    • /
    • 2019
  • This study designs a squat posture recognition system that can provide correct squat posture guidelines. This system comprises two modules: a Kinect camera for monitoring users' body movements and a Wii Balance Board(WBB) for measuring balanced postures with legs. Squat posture recognition involves two states: "Stand" and "Squat." Further, each state is divided into two postures: correct and incorrect. The incorrect postures of the Stand and Squat states were classified into three and two different types of postures, respectively. The factors that determine whether a posture is incorrect or correct include the difference between shoulder width and ankle width, knee angle, and coordinate of center of pressure(CoP). An expert and 10 participants participated in experiments, and the three factors used to determine the posture were measured using both Kinect and WBB. The acquired data from each device show that the expert's posture is more stable than that of the subjects. This data was classified using a support vector machine (SVM) and $na{\ddot{i}}ve$ Bayes classifier. The classification results showed that the accuracy achieved using the SVM and $na{\ddot{i}}ve$ Bayes classifier was 95.61% and 81.82%, respectively. Therefore, the developed system that used Kinect and WBB could classify correct and incorrect postures with high accuracy. Unlike in other studies, we obtained the spatial coordinates using Kinect and measured the length of the body. The balance of the body was measured using CoP coordinates obtained from the WBB, and meaningful results were obtained from the measured values. Finally, the developed system can help people analyze the squat posture easily and conveniently anywhere and can help present correct squat posture guidelines. By using this system, users can easily analyze the squat posture in daily life and suggest safe and accurate postures.

Study of KINECT based 3D Holographic and Gesture (KINECT 기반 3D 홀로그래픽과 제스처에 대한 연구)

  • Jiang, Zhou;Seo, Laiwon;Roh, Changbae
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.411-417
    • /
    • 2013
  • Two-dimensional image processing method and tools Rigi then developed a report prepared by a variety of video and three-dimensional images are increasing demands for navigation. The hard part to experience in the real world experience in the virtual environment, and has the purpose to take advantage of. This is a system that provides a simple 3D background, but everyday actions that can control the system with the needs of an instinctive interface technology means. The purpose of this study a variety of human behavior using the Kinect device in action close to the three-dimensional technology to develop a new navigation control is Kinect Holography and 3D images using the input data so that you have the linkage is to design the system.