• 제목/요약/키워드: Kinase inhibitors

검색결과 517건 처리시간 0.022초

Direct effect of protein kinase C inhibitors on cardiovascular ion channels

  • Son, Youn-Kyoung;Hong, Da-Hye;Kim, Dae-Joong;Firth, Amy L.;Park, Won-Sun
    • BMB Reports
    • /
    • 제44권9호
    • /
    • pp.559-565
    • /
    • 2011
  • Protein kinase C (PKC) is a central enzyme that modulates numerous biological functions. For this reason, specific PKC inhibitors/activators are required to study PKC-related signaling mechanisms. To date, although many PKC inhibitors have been developed, they are limited by poor selectivity and nonspecificity. In this review, we focus on the nonspecific actions of PKC inhibitors on cardiovascular ion channels in addition to their PKC-inhibiting functions. The aim of this paper is to urge caution when using PKC inhibitors to block PKC function. This information may help to better understand PKC-related physiological/biochemical studies.

Targeting Acetate Kinase: Inhibitors as Potential Bacteriostatics

  • Asgari, Saeme;Shariati, Parvin;Ebrahim-Habibi, Azadeh
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권11호
    • /
    • pp.1544-1553
    • /
    • 2013
  • Despite the importance of acetate kinase in the metabolism of bacteria, limited structural studies have been carried out on this enzyme. In this study, a three-dimensional structure of the Escherichia coli acetate kinase was constructed by use of molecular modeling methods. In the next stage, by considering the structure of the catalytic intermediate, trifluoroethanol (TFE) and trifluoroethyl butyrate were proposed as potential inhibitors of the enzyme. The putative binding mode of these compounds was studied with the use of a docking program, which revealed that they can fit well into the enzyme. To study the role of these potential enzyme inhibitors in the metabolic pathway of E. coli, their effects on the growth of this bacterium were studied. The results showed that growth was considerably reduced in the presence of these inhibitors. Changes in the profile of the metabolic products were studied by proton nuclear magnetic resonance spectroscopy. Remarkable changes were observed in the quantity of acetate, but other products were less altered. In this study, inhibition of growth by the two inhibitors as reflected by a change in the metabolism of E. coli suggests the potential use of these compounds (particularly TFE) as bacteriostatic agents.

High Affinity Pharmacological Profiling of Dual Inhibitors Targeting RET and VEGFR2 in Inhibition of Kinase and Angiogeneis Events in Medullary Thyroid Carcinoma

  • Dunna, Nageswara Rao;Kandula, Venkatesh;Girdhar, Amandeep;Pudutha, Amareshwari;Hussain, Tajamul;Bandaru, Srinivas;Nayarisseri, Anuraj
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.7089-7095
    • /
    • 2015
  • Clinical evidence shows that dual inhibition of kinases as well angiogenesis provides ideal therapeutic option in the treatment of medullary thyroid carcinoma (MTC) than inhibiting either of these with the events separately. Although treatment with dual inhibitors has shown good clinical responses in patients with MTC, it has been associated with serious side effects. Some inhibitors are active agents for both angiogenesis or kinase activity. Owing to narrow therapeutic window of established inhibitors, the present study aims to identify high affinity dual inhibitors targeting RET and VEGFR2 respectively for kinase and angiogenesis activity. Established inhibitors like Vandetanib, Cabozantinib, Motesanib, PP121, RAF265 and Sunitinib served as query parent compounds for identification of structurally similar compounds by Tanimoto-based similarity searching with a threshold of 95% against the PubChem database. All the parent inhibitors and respective similar compounds were docked against RET and VEGFR2 in order to retrieve high affinity compounds with these two proteins. AGN-PC-0CUK9P PubCID: 59320403 a compound related to PPI21 showed almost equal affinity for RET and VEGFR2 and unlike other screened compounds with no apparent bias for either of the receptors. Further, AGNPC- 0CUK9P demonstrated appreciable interaction with both RET and VEGFR2 and superior kinase activity in addition to showed optimal ADMET properties and pharmacophore features. From our in silico investigation we suggest AGN-PC-0CUK9P as a superior dual inhibitor targeting RET and VEGFR2 with high efficacy which should be proposed for pharmacodynamic and pharmacokinetic studies for improved treatment of MTC.

Regulation of the Contraction Induced by Emptying of Intracellular $Ca^{2+}$ Stores in Cat Gastric Smooth Muscle

  • Baek, Hye-Jung;Sim, Sang-Soo;Rhie, Duck-Joo;Yoon, Shin-Hee;Hahn, Sang-June;Jo, Yang-Hyeok;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권2호
    • /
    • pp.113-120
    • /
    • 2000
  • To investigate the mechanism of smooth muscle contraction induced by emptying of intracellular $Ca^{2+}$ stores, we measured isometric contraction and $^{45}Ca^{2+}$ influx. $CaCl_2$ increased $Ca^{2+}$ store emptying- induced contraction in dose-dependent manner, but phospholipase C activity was not affected by the $Ca^{2+}$ store emptying-induced contraction. The contraction was inhibited by voltage-dependent $Ca^{2+}$ channel antagonists dose dependently, but not by TMB-8 (intracellular $Ca^{2+}$ release blocker). Both PKC inhibitors (H-7 and staurosporine) and tyrosine kinase inhibitors (genistein and methyl 2,5-dihydroxycinnamic acid) significantly inhibited the contraction, but calmodulin antagonists (W-7 and trifluoperazine) had no inhibitory effect on the contraction. The combined inhibitory effects of protein kinase inhibitors, H-7 and genistein, together with verapamil were greater than that of each one alone. In $Ca^{2+}$ store-emptied condition, $^{45}Ca^{2+}$ influx was significantly inhibited by verapamil, H-7 or genistein but not by trifluoperazine. However combined inhibitory effects of protein kinase inhibitors, H-7 and genistein, together with verapamil were not observed. Therefore, this kinase pathway may modulate the sensitivity of contractile protein. These results suggest that contraction induced by emptying of intracellular $Ca^{2+}$ stores was mediated by influx of extracellular $Ca^{2+}$ through voltage-dependent $Ca^{2+}$ channel, also protein kinase C and/or tyrosine kinase pathway modulates the $Ca^{2+}$ sensitivity of contractile protein.

  • PDF

Comparative Molecular Field Analysis of Pyrrolopyrimidines as LRRK2 Kinase Inhibitors

  • Balupuri, Anand;Balasubramanian, Pavithra K.;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제9권1호
    • /
    • pp.1-9
    • /
    • 2016
  • Leucine rich repeat kinase 2 (LRRK2) is a highly promising target for Parkinson's disease (PD) that affects millions of people worldwide. A three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis was performed on a series of pyrrolopyrimidine-based selective LRRK2 kinase inhibitors. This study was performed to rationalize the structural requirements responsible for the inhibitory activity of these compounds. A reliable 3D-QSAR model was developed using comparative molecular field analysis (CoMFA) technique. The model produced statistically acceptable results with a cross-validated correlation coefficient ($q^2$) of 0.539 and a non-cross-validated correlation coefficient ($r^2$) of 0.871. Robustness of the model was further evaluated by bootstrapping and progressive scrambling analysis. This work could assist in designing more potent LRRK2 inhibitors.

Synthesis and evaluation of inhibitors for Polo-box domain of Polo-like kinase 1

  • Eun Kyoung Ryu
    • 대한방사성의약품학회지
    • /
    • 제6권2호
    • /
    • pp.139-145
    • /
    • 2020
  • Polo-like kinase 1 (Plk1) is a key protein in mitosis and has been validated as a target for tumor therapy. It is well known to highly overexpress in many kinds of tumor, which has been implicated as a potential biomarker for tumor treatment and diagnosis. Plk1 consists of two domains, the N-terminus kinase domain and the C-terminus polo-box domain (PBD). The inhibitors have been developed for PBD of Plk1, which were shown a high level of affinity and selectivity for Plk1 that led to mitotic arrest and apoptotic cell death. This review discusses the inhibitors for PBD of Plk1 that are suitable for in vivo tumor treatment. They can be further extended for developing in vivo imaging probes for early diagnosis of tumor.

3D QSAR Studies of Mps1 (TTK) Kinase Inhibitors Based on CoMFA

  • Balasubramanian, Pavithra K.;Balupuri, Anand;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제9권2호
    • /
    • pp.113-120
    • /
    • 2016
  • Monopolar spindle 1 (Mps1) is an attractive cancer target due to its high expression levels in a wide range of cancer cells. Mps1 is a dual specificity kinase. It plays an essential role in mitosis. The high expression od Mps1 was observed in various grades of breast cancers. In the current study, we have developed a CoMFA model of pyridazine derivatives as Mps1 kinase inhibitors. The developed CoMFA model ($q^2=0.797$; ONC=6; $r^2=0.992$) exhibited a good predictive ability. The model was then validated by Leave out five, progressive sampling and bootstrapping and found to be robust. The analysis of the CoMFA contour maps depicted favorable and unfavorable regions to enhance the activity. Bulky positive substitution at $R^3$ position and Negative substitution in $R^1$ position is favored could increase the activity. In contrast, bulky substitution in $R^1$ position is not favored. Our results can be used in designing a potent Mps1 (TTK) inhibitor.

Generation of knockout mouse models of cyclin-dependent kinase inhibitors by engineered nuclease-mediated genome editing

  • Park, Bo Min;Roh, Jae-il;Lee, Jaehoon;Lee, Han-Woong
    • Laboraroty Animal Research
    • /
    • 제34권4호
    • /
    • pp.264-269
    • /
    • 2018
  • Cell cycle dysfunction can cause severe diseases, including neurodegenerative disease and cancer. Mutations in cyclin-dependent kinase inhibitors controlling the G1 phase of the cell cycle are prevalent in various cancers. Mice lacking the tumor suppressors $p16^{Ink4a}$ (Cdkn2a, cyclin-dependent kinase inhibitor 2a), $p19^{Arf}$ (an alternative reading frame product of Cdkn2a,), and $p27^{Kip1}$ (Cdkn1b, cyclin-dependent kinase inhibitor 1b) result in malignant progression of epithelial cancers, sarcomas, and melanomas, respectively. Here, we generated knockout mouse models for each of these three cyclin-dependent kinase inhibitors using engineered nucleases. The $p16^{Ink4a}$ and $p19^{Arf}$ knockout mice were generated via transcription activator-like effector nucleases (TALENs), and $p27^{Kip1}$ knockout mice via clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (CRISPR/Cas9). These gene editing technologies were targeted to the first exon of each gene, to induce frameshifts producing premature termination codons. Unlike preexisting embryonic stem cell-based knockout mice, our mouse models are free from selectable markers or other external gene insertions, permitting more precise study of cell cycle-related diseases without confounding influences of foreign DNA.

Ligand-Based CoMFA Study on Pyridylpyrazolopyridine Derivatives as PKCθ Kinase Inhibitors

  • Balasubramanian, Pavithra K.;Balupuri, Anand;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제7권4호
    • /
    • pp.253-259
    • /
    • 2014
  • Protein kinase C theta (PKC-${\theta}$) is a serine/threonine specific protein kinase. It is largely expressed in the T-cells and CD28 signaling. PKC-${\theta}$ phosphorylates diverse proteins that are involved in the various cellular signaling pathways. Activated PKC-${\theta}$ in turn activates other transcription factors that control the proliferation and differentiation of T- cells. PKC-${\theta}$ is considered to be an interesting therapeutic target due to its crucial role in the proliferation, differentiation and survival of T-cells. In the present study, we have performed ligand-based CoMFA study on a series of pyridylpyrazolopyridine derivatives as PKC-${\theta}$ inhibitors. An acceptable CoMFA model ($q^2$=0.544; ONC=4; $r^2$=0.876) was developed and validated by Bootsrapping and progressive sampling. The CoMFA contour map suggested the regions to increase the activity. Bulky substitutions in R2 position of the piperizine ring could increase the activity. Similarly positive, small substitution in the R1 position of the Pyridine ring could considerably increase the activity. Our work could assist in designing more potent PKC-${\theta}$ inhibitors of pyridylpyrazolopyridine derivatives.