• 제목/요약/키워드: Kimchi LAB

검색결과 138건 처리시간 0.023초

식물 유산균의 생리활성작용과 시장현황 및 전망 (A Study on the Physiological Activity and Industrial Prospects of Plant-origin Lactic Acid Bacteria)

  • 조영훈;박석남;정승환
    • Journal of Dairy Science and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.53-57
    • /
    • 2009
  • Lactic acid bacteria (LAB) Play an important role in the human diet and are used in the production of edible fermented products such as kimchi and yoghurt. LAB are regarded as safe food additives used to enhance the nutritive value of foods. Plant-origin lactic acid bacteria (PLAB) cultured in vegetal media are now widely used in food industries. PLAB have been found to activate intestinal immunity, modulate the balance of the intestinal bacterial from, and enhance intestinal function. They are known for their strong resistance to acid; this enables them to persist for a longer duration in the human intestine. PLAB can also survive in the intestinal environment under conditions of poor nutrition. They have stronger vitality as compared to LAB of animal origin. Due to the unique characteristics of PLAB, they are being widely used in Japan for processing foods such as yoghurt and beverages. Recently, PLAB has also been used as the culture for processing yoghurt in Korea. We expect further research on the functional effects of PLAB.

  • PDF

김치 공장의 절임 폐수 및 배추 쓰레기를 이용한 효모 배양 (Production of Yeast Cell Mass from Waste Brine and Cabbage Waste of Kimchi Factory)

  • 최민호;박연희
    • 유기물자원화
    • /
    • 제4권2호
    • /
    • pp.1-9
    • /
    • 1996
  • 김치 공장의 배추 절임 폐수 및 배추 쓰레기를 이용한 효모 균체 생산 가능성을 조사하였다. 절임 폐수는 약 1g/L의 환원당과 7~12%의 높은 NaCl을 함유하고 있으며 pH는 약 5에서 6사이로 내염성 효모가 생육 가능한 것으로 밝혀졌다. 4종의 내염성 효모의 생육을 조사한 결과 Candida guilliermondii ATCC 6260이 가장 우수한 생육을 나타내었고, 배양 조건에 따른 절임 폐수에서의 생육 특성을 조사한 결과, C. guilliermondii는 $25{\sim}35^{\circ}C$의 배양 온도, 절임 폐수의 초기 pH가 pH 3~6 그리고, 염농도 9%까지는 생육에 영향받지 않았으며 질산염이나 인산염의 첨가는 불필요한 것으로 나타났다. 이 효모를 절임 폐수에서 배양할 경우는 약 85%의 BOD 감소 효과를 보였다. 한편, 김치 공장에서 발생하는 배추 쓰레기의 자원화 방법으로 절임 폐수에 첨가한 결과 20% 첨가했을 경우 절임 폐수만 사용한 경우보다 약 5.5배 가량 균체 생산이 증가하였다.

  • PDF

Cloning and Characterization of a Gene Encoding Phosphoketolase in a Lactobacillus paraplantarum Isolated from Kimchi

  • Jeong, Do-Won;Lee, Jung-Min;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.822-829
    • /
    • 2007
  • A gene coding for phosphoketolase, a key enzyme of carbohydrate catabolism in heterofermentative lactic acid bacteria(LAB), was cloned from a Lactobacillus paraplantarum C7 and expressed in Escherichia coli. The gene is 2,502 bp long and codes for a 788-amino-acids polypeptide with a molecular mass of 88.7 kDa. A Shine-Dalgarno sequence(aaggag) and an inverted-repeat terminator sequence are located upstream and downstream of the phosphoketolase gene, respectively. The gene exhibits an identity of >52% with phosphoketolases of other LAB. The phosphoketolase of Lb. paraplantarum C7(LBPK) contains several highly conserved phosphoketolase signature regions and typical thiamine pyrophosphate(TPP) binding sites, as reported for other TPP-dependent enzymes. The phosphoketolase gene was fused to a glutathione S-transferase(GST::LBPK) gene for purification. The GST::LBPK fusion protein was detected in the soluble fraction of a recombinant Escherichia coli BL21. The GST::LBPK fusion protein was purified with a yield of 4.32mg/400ml by GSTrap HP affinity column chromatography and analyzed by N-terminal sequencing. LBPK was obtained by factor Xa treatment of fusion protein and the final yield was 3.78mg/400ml. LBPK was examined for its N-terminal sequence and phosphoketolase activity. The $K_M\;and\;V_{max}$ values for fructose-6-phosphate were $5.08{\pm}0.057mM(mean{\pm}SD)$ and $499.21{\pm}4.33{\mu}mol/min/mg$, respectively, and the optimum temperature and pH for the production of acetyl phosphate were $45^{\circ}C$ and 7.0, respectively.

김치유래 Lactobacillus plantarum K-21의 DPPH 라디칼 제거활성 증진 및 다양한 항산화 효과 (Enhanced DPPH Radical Scavenging Activity of Lactobacillus plantarum K-21 Isolated from Kimchi and its Various Antioxidant Effects)

  • 김예린;김예담;전채민;박규림;이오미;손홍주
    • 한국환경과학회지
    • /
    • 제31권8호
    • /
    • pp.715-725
    • /
    • 2022
  • Lactic Acid Bacteria (LAB) are among the representative probiotics that have been used for a long time in fermented food. Although there are many studies on detecting the radical scavenging activity of LAB, few studies have been conducted on the environmental factors that improve scavenging activity. This study investigated the environmental factors affecting the DPPH radical scavenging and various antioxidant activities of Kimchi-derived Lactobacillus plantarum K-21 with antihypertensive and radical scavenging activities. The optimal conditions for scavenging DPPH radicals were glucose 2%, bactopeptone 0.5%, Tween 80 0.05%, L-cysteine 0.05%, and an initial pH 6.5 at 35℃. Under optimal conditions, the DPPH radical scavenging activity was 94.8±2.2%, which was 1.5 times higher than that of the basic medium. In addition, L. plantarum K-21 had other antioxidant activities; ABTS radical scavenging (93.6±1.5%), hydroxyl radical scavenging (8.5±0.9%), metal chelating (65.9±0.5%), NO scavenging (53.1±19%), SOD-like (25.1±1.5%), and reducing power (11.7±1.4%) activities were detected. Therefore, L. plantarum K-21 may act not only as a starter for lactic acid-fermented foods with improved functionality but also as a drug for various diseases caused by oxidative stress.

발효 온도에 따른 김치의 산도 변화와 Vancomycin 내성 젖산균의 분포 (Changes in Acidity and Distributions of the Vancomycin-Resistant Lactic Acid Bacteria in the Kimchi Fermented at Different Temperatures)

  • 정의숙;김기환;신원철;송광영;윤성식
    • 한국미생물·생명공학회지
    • /
    • 제32권3호
    • /
    • pp.249-255
    • /
    • 2004
  • 배추김치를 담근 직후 $4^{\circ}C$, $10^{\circ}C$, 그리고 $20^{\circ}C$에서 최고 50일까지 발효시키면서 매일 시료를 취하여 pH 및 적정산도의 변화를 경시적으로 관찰하였다. pH 와 산도는 발효온도에 따라서 크게 영향을 받은 것으로 나타났으며 이러한 결과는 발효 김치중의 미생물학적 성상이 발효 온도에 따라서 상당하게 달라진다는 점을 암시하였다. 각 발효 온도별로 숙성 김치의 상미범위로 알려진 적정산도 0.6~0.8%(pH 4.2)에 도달하여 유지되는 시간을 보면 $4^{\circ}C$에서는 20~30일, 1$0^{\circ}C$에서는 3~5일 그리고 $20^{\circ}C$에서는 1~2일이 소요되었다. 각 김치 시료로부터 vancomycin(300$\mu$g/m1)이 함유된 modified Lactobacilli MRS agar를 이용하여 vancomycin에 대한 내성을 나타내는 127주를 분리하였다. 이 중에서 저온에서 분리한 균주를 중심으로 13개를 선택하여 생화학적 동정(API 50 CHL kit)을 실시함으로서 분리균 중 Leuconostoc 속 균주가 차지하는 비율을 검토한 결과 Leuconostoc 속과 Lactobacillus 속은 각각 6 균주로 나타났으며, 한 균주는 생화학적 동정이 불가능하여 아직 보고되지 않은 새로운 균종으로 추정되었다. 생화학적 방법의 재현성이 문제가 되어 다시 ITS-PCR법을 사용하여 동정하였다. 그 결과 8 균주는 크기가 564 bp인 1개의 DNA 밴드를 형성하였으며, Leuconostoc mesenteroides ssp. mesenteroides/dextraniucm로 동정되었다. 또 3개의 DNA밴드를 나타낸 4개의 균주는 L. brevis로 동정 되었으나 1 균주는 ITS-PCR법으로도 동정할 수 없었다. 본 연구의 결과로 미루어 볼 때 4~$10^{\circ}C$ 발효초기에는 Leuconostoc 속이 우점 세균으로 지목되었고 발효기간이 경과 할수록 L. brevis도 김치의 균총에서 상당한 부분을 차지할 것으로 추정된다. 이에 반해서 $20^{\circ}C$에서는 Leuconostoc속 균주가 우세하게 출현할 것이라는 예상과는 달리 발효 초기부터 L. brevis와 같은 세균이 발효를 주도하는 균종으로 생각되었다.

김치에서 박테리오신을 분비하는 Lactobacillus sakei균주의 분리 (Isolation of a Bacteriocin - Producing Lactobacillus sakei Strain from Kimchi)

  • 김한택;박재용;이강권;김정환
    • 한국식품영양과학회지
    • /
    • 제33권3호
    • /
    • pp.560-565
    • /
    • 2004
  • 배추김치로부터 식품유해균인 Listeria monocytogenes를 저해하는 박테리오신을 생산하는 유산균, Lactobacillus sakei P3-1이 분리되었다. 형태학적, 생화학적 특성조사와 최종적으로 PCR로 증폭하여 얻은 16S rDNA 염기서열 결정을 통해서 L. sakei로 동정되었다. L. sakei P3-1이 분비하는 박테리오신은 여러 그람 양성 및 음성균들 중에서 단지 L. monocytogenes만을 저해하는 그래서 저해범위가 매우 좁은 박테리오신으로 확인되었다. 이온교환 크로마토그래피에 의해서 박테리오신은 부분 정제되었으며 박테리오신의 열처리 안정성을 조사한 결과 121$^{\circ}C$에서 15분간 그리고10$0^{\circ}C$에서 10분간 열처리 후에도 각각 12.5%와 50%의 역가가 잔존하여 상당한 열안정성을 지니고 있음을 알 수 있었다. MRS배지에서 배양중 배양온도가 박테리오신 역가에 미치는 영향을 조사한 결과 3$0^{\circ}C$에서 배양할 때 그리고 18시간 이상 배양에서 가장 높은 1,000 AU/mL 역가를 보였다. 한편 SDS-PAGE 및 activity staining에 의해 측정된 박테리오신의 분자량은 4,000이었다. L. monocytogenes 생육 억제능, 작은 분자량 및 높은 열안정성 등의 성질들을 종합적으로 고려할 때 L. sakei P3-1이 생산하는 박테리오신은 박테리오신들 중에서 class II-a에 속하는 것으로 추정된다.

Transformation of Leuconostoc mesenteroides SY1, a Strain Isolated from Kimchi

  • JEONG SEON-JU;PARK JAE-YONG;KIM JONG HWAN;KIM GYEONG MIN;CHUN JIYEON;LEE JONG-HOON;CHUNG DAE-KYUN;KIM JEONG HWAN
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.149-152
    • /
    • 2006
  • Leuconostoc mesenteroides SY1, a strain isolated from cabbage Kimchi, was transformed with pCW4, a shuttle vector based on a cryptic plasmid from Lactobacillus paraplantarum C7. $\alpha-Amylase$ gene, amyL, from Bacillus licheniformis was cloned into pCW4, resulting in $pCW4T{\alpha},\;and\;pCW4T{\alpha}$ was introduced into SY1 by electroporation. Transformation efficiency was $10^2cells/{\mu}g$ plasmid DNA. L. mesenteroides cells harboring $pCW4T{\alpha}$ did not show amylase activity, although amyL transcript was synthesized as determined by slot blot experiment. $pCW4T{\alpha}$ was stably maintained in SY1 in the presence of erythromycin (Em, $5\;{\mu}g/ml$) but rapidly lost when Em was omitted. Less than $1\%$ of the cells maintained $pCW4T{\alpha}$ after 5 days at $30^{\circ}C$.

Different Immune Regulatory Potential of Lactobacillus plantarum and Lactobacillus sakei Isolated from Kimchi

  • Hong, Yi-Fan;Kim, Hangeun;Kim, Hye Rim;Gim, Min Geun;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권12호
    • /
    • pp.1629-1635
    • /
    • 2014
  • It is known that lactic acid bacteria (LAB) have many beneficial health effects, including anti-oxidative activity and immune regulation. In this study, the immune regulatory effects of Lactobacillus sakei and Lactobacillus plantarum, which are found in different types of kimchi, were evaluated. L. sakei and its lipoteichoic acid (LTA) have greater immune stimulating potential in IL-12, IFN-${\gamma}$, and TNF-${\alpha}$ production as compared with L. plantarum in an in vitro condition. On the other hand, L. plantarum is assumed to repress the Th1 immune response in murine experiments. After being injected with LPS, L. plantarum-fed mice maintained a healthier state, and the level of TNF-${\alpha}$ in their blood was lower than in other bacterial strainfed mice and in the LPS-only control mice. Additionally, IL-12 production was significantly decreased and the production of IL-4 was greatly increased in the splenocytes from L. plantarum-fed mice. Further experiments revealed that the pre-injection of purified LTA from L. plantarum (pLTA), L. sakei (sLTA), and S. aureus (aLTA) decreased TNF-${\alpha}$ and IL-4 production in LPS-injected mice. Mouse IL-12, however, was significantly increased by aLTA pre-injection. In conclusion, the L. sakei and L. plantarum strains have immune regulation effects, but the effects differ in cytokine production and the regulatory effects of the Th1/Th2 immune response.

Characterization of Paraplantaricin C7, a Novel Bacteriocin Produced by Lactobacillus paraplantarum C7 Isolated from Kimchi

  • Lee, Kwang-Hee;Park, Jae-Yong;Jeong, Seon-Ju;Kwon, Gun-Hee;Lee, Hyong-Joo;Chang, Hae-Choon;Chung, Dae-Kyun;Lee, Jong-Hoon;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.287-296
    • /
    • 2007
  • A Lactobacillus paraplantarum strain producing a bacteriocin was isolated from kimchi using the spot-on-the lawn method and named L. paraplantarum C7 [15]. The bacteriocin, paraplantaricin C7, was found to inhibit certain Lactobacillus strains, including L. plantarum, L. pentosus, and L. delbrueckii subsp. lactis. It also inhibited Enterococcus faecalis, yet did not inhibit most of the other LAB (lactic acid bacteria) tested. The maximum level of paraplantaricin C7 activity was observed under the culture conditions of $25^{\circ}C$ and a constant pH of 4.5. Paraplantaricin C7 retained 90% of its activity after 10 min of treatment at $100^{\circ}C$ and remained stable within a pH range of 2-8. Based on a culture supernatant, paraplantaricin C7 was purified by DEAE-Sephacel column chromatography and $C_{18}$ reverse-phase HPLC. SDS-PAGE and activity staining were then conducted using the purified paraplantaricin C7, and its molecular mass determined to be about 3,800 Da. The 28 N-terminal amino acids from the purified paraplantaricin C7 were determined, and the structural gene encoding paraplantaricin C7, ppnC7, was cloned by PCR using degenerate primers based on the N-terminal amino acid sequence. The nucleotide sequences for ppnC7 and other neighboring orfs exhibited a limited homology to the previously reported plantaricin operon genes. Paraplantaricin C7 is a novel type II bacteriocin containing a double glycine leader sequence.

Functional Properties of Yogurt Containing Specific Peptides derived from Whey Proteins

  • Won, Ji-Young;Kim, Hong-Soek;Jang, Jin-Ah;Kim, Cheol-Hyun
    • Journal of Dairy Science and Biotechnology
    • /
    • 제35권4호
    • /
    • pp.249-254
    • /
    • 2017
  • The purpose of this study was to investigate the acid tolerance, bile acid tolerance, and fermentation activity of lactic acid bacteria isolated from Kimchi in the presence of hydrolysates of whey protein concentrate. Kimchi isolates DK109, DK119, DK121, DK128, DK211, DK212, and DK215, which were identified as Lactobacillus sp., and L. casei DK128 showed the highest acid and bile acid tolerance. To produce whey hydrolysates, enzymes were added to a 10% (w/v) whey protein concentrate (WPC) solution at 1:50 (w/v, protein). The viabilities of the DK strains were determined in the presence of low pH and bile salts. Then, yogurt was produced via fermentation with L. casei DK128, an isolate from Kimchi, in the presence of the following additives: CPP, WPC, and WPC hydrolysates (WPCH) generated by alcalase (A) or neutrase (N). The produced yogurts were subjected to various analyses, including viable cell counts (CFU/mL), pH, titratable activity, and sensory testing. After 8 h of fermentation, the pH and titratable activity values of all test samples were 4.2 and 0.9, respectively. The viable counts of LAB were $3.49{\times}10^8$, $5.72{\times}10^8$, $7.01{\times}10^8$, and $6.97{\times}10^8$, for the Control, CPP, A, and N samples, respectively. These results suggest that whey proteins have potential as dietary supplements in functional foods and that WPCH could be used in yogurt as a low-cost alternative to CPP.