• Title/Summary/Keyword: Kim. Han-sup

Search Result 1,143, Processing Time 0.034 seconds

Effects of Temperature, Irradiance, and Nutrient Type on the Fragment Growth of Green Tide Alga Cladophora vadorum (녹조 대발생종 금발대마디말(Cladophora vadorum)의 절편 생장에 온도, 조도 및 영양염 종류가 미치는 영향)

  • Na, Yeon Ju;Jeon, Da Vine;Lee, Jung Rok;Kim, Young Sik;Choi, Han Gil;Nam, Ki Wan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.5
    • /
    • pp.657-664
    • /
    • 2016
  • The green macroalga Cladophora vadorum bloomed along the coast at Sangrok Beach, Buan, South Korea, in September 2015. To elucidate the cause of bloom, the effects of environmental factors on the vegetative growth of adult fragments were examined. Growth experiments were carried out under different combinations of temperatures and irradiances, and with a single factor of nutrients (nitrogen, phosphorus). The maximal growth of C. vadorum was reported under the combination of 25°C and 100 μmol photons m−2s−1. The species grew under a wide range of N and P concentrations. The growth of C. vadorum peaked at 50 μM PO43−, 80 μM NH4+, and 100 μM NO3. Adult fragments formed holdfasts and new branches within 3 days in culture and became adults, showing polarized growth patterns, in 2 weeks. This is the first report showing the development of numerous bladelets from a segment in Cladophora species. The present results indicate that Cladophora blooms appear under growth conditions that are favorable in terms of temperatures, irradiance, and nutrients via fragment growth patterns producing rapid holdfasts and many bladelets.

Regional Groundwater Flow Characteristics due to the Subway System in Seoul, Korea (지하철에 의한 서울특별시 광역 지하수 유동 특성)

  • Shin, Esther;Kim, Hyoung-Soo;Ha, Kyoochul;Yoon, Heesung;Lee, Eunhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.41-50
    • /
    • 2015
  • Hydrogeologic environment of the Mega City such as Seoul, suffers from rapid changes caused by urbanization, construction of underground subway or buildings, and contaminant loading by diverse anthropogenic activities. Understanding the present condition of groundwater environment and water budget is necessary to prevent natural and manmade disasters and to prepare for sustainable water resource management of urban environment. In this study, regional groundwater flow and water budget status of Seoul was analyzed using numerical simulation. Modeling result indicated that groundwater level distribution of Seoul generally followed the topography, but the significant decreases in groundwater level were observed around the subway network. Steady-state water balance analysis showed groundwater recharge by rainfall and leakage from the water supply network was about 550,495 m3/day. Surface water inflow and baseflow rate via Han River and major streams accounted for 799,689 m3/day and 1,103,906 m3/day, respectively. Groundwater usage was 60,945 m3/day, and the total groundwater leakage along the subway lines amounted to 114,746 m3/day. Modeling results revealed that the subway could decrease net groundwater baseflow by 40%. Our study result demonstrated that the subway system can have a significant influence on the groundwater environment of Seoul.

Optimizing of Coagulation and Solid-Liquid Separation Conditions Using Aluminum Sulfate and Poly-Aluminum Chloride Coagulants from Brine Wastewater Discharged by the Epoxy-resin Process (에폭시수지 공정에서 발생되는 고염 폐수로부터 황산알루미늄과 PAC 응집제를 이용한 응집/고액분리 조건 최적화)

  • Lee, Chang-Han;Kim, Yu-Jin;Moon, Sung-Hyun;Kwon, Sung-Hun;Ahn, Kab-Hwan
    • Journal of Environmental Science International
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, solid-liquid separation conditions for coagulation and sedimentation experiments using inorganic coagulant (aluminum sulfate and Poly-Aluminum Chloride (PAC)) were optimized with brine wastewater discharged by the epoxy-resin process. When the turbidity and suspended solid (SS) concentration in raw wastewater were 74 NTU and 4.1 mg/L, respectively, their values decreased the lowest in a coagulant dosage of 135.0 - 270.0 mg Al3+/L. The epoxy resin was re-dispersed in the upper part of wastewater treated above 405.0 mg Al3+/L. The removal efficiencies of turbidity and SS via dosing with aluminum sulfate and PAC were evaluated at initial turbidity and SS of 74 - 630 NTU and 4.1 - 38.5 mg/L, respectively. They increased most in the range from 135.0 - 270.0 mg Al3+/L. The solid-liquid separation condition was quantitatively compared to the correlation of SS removal efficiency between the coagulant dosage and SS concentration based on the concentration of aluminum ions. The empirical formula, R = beaD, shows the relationship between SS removal efficiency (R) and coagulant dosage (D) at 38.5 mg/L; it produced high correlation coefficients (r2) of 0.9871 for aluminum sulfate and 0.9751 for PAC.

A Study on Particulate Matter Reduction Effects of Vegetation Bio-Filters by Airflow Volume (공조풍량별 식생바이오필터의 입자상 오염물질 저감효과 연구)

  • Choi, Boo Hun;Kim, Tae Han
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.89-95
    • /
    • 2021
  • As the influence of fine dust on society spreads gradually, the public's interest in indoor air is increasingly rising. Air-purifying plants are drawing keen attention due to their natural purifying function enabled by plant physiology. However, as their fine dust reduction mechanism is limited to adsorption only, vegetation bio-filters that optimize purification effects through integration with air-conditioning systems is rising as an alternative. In accordance with the relevant standard test methods, this study looked into the fine dust reduction assessment method by air-conditioning airflow volume that can be used for the industrial spread of vegetation bio-filters. In the case of PM10 at 300 ㎍/m3, it was in the order of EG-B(3,500CMH, 29 min.) < EG-A (2,500CMH, 37 min.) < CG(0CMH, 64 min.) for reaching the maintenance level (100 ㎍/m3) of publicly used facilities. For reaching the WHO Guideline(50 ㎍/m3) requirement, it was in the order of EG-B (51 min.) < EG-A (160 min.) < CG (170 min.). In the case of PM2.5, it was in the order of EG-B (26 min.) < EG-A (33 min.) < CG (57 min.) for reaching the maintenance level (50 ㎍/m3) of publicly used facilities. It was in the order of EG-B (48 min) < EG-A (140 min) < CG (158 min) for reaching the WHO Guideline (25 ㎍/m3) requirement. The findings from the analysis showed that fine dust can be reduced most efficiently when the system is operated at 3,500CMH level. The limitation of this study is that due to the absence of a way of assessing the stress of plants in vegetation bio-filters, generating optimal air-conditioning air flow of the relevant system and economics analysis against the existing facility-type air purification system have been clarified, which should be explored further though follow-up studies.

Analysis of the Rate of Post-Hatching Growth of the First Artificially Bred Green Turtle Chelonia mydas Juveniles in Korea (국내최초 푸른바다거북(Chelonia mydas)의 실내 인공 번식 및 어린 개체의 초기 성장 특성)

  • Cho, Eunvit;Kim, Il-Hun;Han, Dong Jin;Im, Jien;Cho, In Young;Lee, Ki-Young;Moon, Dae Yeon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.6
    • /
    • pp.917-926
    • /
    • 2022
  • The green turtle Chelonia mydas has been designated as an endangered species globally due to its reduced population. Although C. mydas is not known to reproduce on the shores of the Korean peninsula, it has been listed as a protected marine species in South Korea. This study describes the first successful captive breeding of C. mydas in a commercial aquarium in South Korea and provides information on the early growth patterns of C. mydas hatched and reared in indoor facilities. C. mydas YS-B003 laid a total of 594 eggs in ten nesting events in the period December 2016-June 2017. Of these, 115 fertilized eggs from six events hatched successfully. The size of the newly hatched turtles differed significantly among nesting events. The hatchlings from the 8th and 9th nesting events were relatively smaller than those from the 3rd and 5th events. The rate of growth initially varied across the different events, but from the 1,000th day, the inter-group variation disappeared. The present study provides useful information for future captive breeding of sea turtles in indoor facilities, which would contribute to the protection of these endangered sea turtle species.

Effect of Nitrogen Fertilizer Application on Yield and Quality of Korean Soft Wheat Cultivar 'Goso'

  • Han-yong Jeong;Yulim Kim;Chuloh Cho;Jinhee Park;Chon-Sik Kang;Jong-Min Ko;Jiyoung Shon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.63-63
    • /
    • 2022
  • Wheat flour can be categorized into bread, all-purpose, cake flour according to its protein content. Since optimal wheat flour protein content is different for each end use, it is necessary to diversify the nitrogen fertilizer methods depending on the end use and cultivar. Optimal wheat flour protein content of soft wheat (for cake flour) is lowest (<=10%) among all end use, it is necessary to develop nitrogen fertilizer methods for high yield and low protein content. In order to analyze the yield and quality changes of soft wheat as nitrogen fertilizer amount and splitting timing, soft wheat cultivar 'goso' was sown on paddy soil in jeunju, Republic of Korea ('21.10). the amount of nitrogen fertilizer was divided into 4 levels by adjusting 2kg/10a increments from 5.1 to ll.lkg/lOa, and in the N 7.1 and 9.1 kg/1 Oa(standard) treatment, N amount divided into sowing date:regrowing stage=3:7,4:6(standard), 5:5. In regrowing stage, Tiller number and N fertilizer amount at sowing date showed a correlation; y=-121.14x2+792.66x-525.41 (R2=0.77*, y: Tiller number/m2, x: N amount at sowing date(kg/10a)). Tiller number in regrowing stage was the highest when the nitrogen fertilizer amount at sowing date was 3.23kg/10a. spike number per m2 was the highest when N fertilizer was divided into sowing date:regrowing stage=3:7(N amount: 9.1kg/10a). If N fertilizer amount was fixed, grain yield was also the highest when N fertilizer was divided into sowing date :regrowing stage=3:7. Also, N amount at sowing date and grain yield showed no correlation, but N amount at regrowing stage and grain yield showed significant correlation. As N amount increased, protein content also showed a tendency to increase.

  • PDF

Annual Variation of Macroalgal Flora and Community Structure in the Subtidal Zone at Gapado Island, Jeju, Korea (제주 가파도 해역의 조하대 해조상 및 군집구조의 연간 변동)

  • Bo Yeon Kim;Song-Hun Han;Seung-Jong Lee;Jun-Cheol Ko
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.1
    • /
    • pp.79-87
    • /
    • 2024
  • We seasonally examined marine macroalgal community structures in the subtidal zones at Gapado Island, Jeju, Korea, from February 2013 to November 2019. A total of 164 macroalgal species were identified, including 15 green, 40 brown, and 109 red algae. Species richness ranged from 54-106 species, with the maximum observed in 2013 and the minimum observed in 2015. Cladophora wrightiana var. minor, Ecklonia cava, Amphiroa anceps, Corallina aberrans, Corallina crassisima, Synarthrophyton chejuense, Sonderophycus capensis and Plocamium telfairiae occurred in all seasons. The average annual seaweed biomass was 1,258.22 g wet wt./m2, ranging from 917.51 g/m2 in 2017 to 1,551.95 g/m2 in 2014. E. cava was the most dominant species, accounting for 46.57% of the total seaweed biomass. The subdominant species were P. telfairiae and A. anceps, comprising 8.64% (108.75 g/m2) and 6.65% (83.61 g/m2) of the total biomass, respectively. The vertical distribution of subtidal seaweeds were represented by E. cava and P. telfairiae at 5-20 m, A. anceps at 10-20 m, C. aberrans and C. crassisima at 5 m and C. wrightiana var. minor at 10 m. Cluster analysis revealed three distinct groups: group A (2014-2018), group B (2019) and group C (2013), indicating significant differences in the annual seaweed community.

Tumor-Infiltrating Neutrophils and Non-Classical Monocytes May Be Potential Therapeutic Targets for HER2negative Gastric Cancer

  • Juhee Jeong;Duk Ki Kim;Ji-Hyeon Park;Do Joong Park;Hyuk-Joon Lee;Han-Kwang Yang;Seong-Ho Kong;Keehoon Jung
    • IMMUNE NETWORK
    • /
    • v.21 no.4
    • /
    • pp.31.1-31.16
    • /
    • 2021
  • Gastric cancer (GC) is the fourth most common cause of cancer-related death globally. The classification of advanced GC (AGC) according to molecular features has recently led to effective personalized cancer therapy for some patients. Specifically, AGC patients whose tumor cells express high levels of human epidermal growth factor receptor 2 (HER2) can now benefit from trastuzumab, a humanized monoclonal Ab that targets HER2. However, patients with HER2negative AGC receive limited clinical benefit from this treatment. To identify potential immune therapeutic targets in HER2negative AGC, we obtained 40 fresh AGC specimens immediately after surgical resections and subjected the CD45+ immune cells in the tumor microenvironment to multi-channel/multi-panel flow cytometry analysis. Here, we report that HER2 negativity associated with reduced overall survival (OS) and greater tumor infiltration with neutrophils and non-classical monocytes. The potential pro-tumoral activities of these cell types were confirmed by the fact that high expression of neutrophil or non-classical monocyte signature genes in the gastrointestinal tumors in The Cancer Genome Atlas, Genotype-Tissue Expression and Gene Expression Omnibus databases associated with worse OS on Kaplan-Meir plots relative to tumors with low expression of these signature genes. Moreover, advanced stage disease in the AGCs of our patients associated with greater tumor frequencies of neutrophils and non-classical monocytes than early stage disease. Thus, our study suggests that these 2 myeloid populations may serve as novel therapeutic targets for HER2negative AGC.

Application of near-infrared spectroscopy for hay evaluation at different degrees of sample preparation

  • Eun Chan Jeong;Kun Jun Han;Farhad Ahmadi;Yan Fen Li;Li Li Wang;Young Sang Yu;Jong Geun Kim
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1196-1203
    • /
    • 2024
  • Objective: A study was conducted to quantify the performance differences of the near-infrared spectroscopy (NIRS) calibration models developed with different degrees of hay sample preparations. Methods: A total of 227 imported alfalfa (Medicago sativa L.) and another 360 imported timothy (Phleum pratense L.) hay samples were used to develop calibration models for nutrient value parameters such as moisture, neutral detergent fiber, acid detergent fiber, crude protein, and in vitro dry matter digestibility. Spectral data of hay samples prepared by milling into 1-mm particle size or unground were separately regressed against the wet chemistry results of the abovementioned parameters. Results: The performance of the developed NIRS calibration models was evaluated based on R2, standard error, and ratio percentage deviation (RPD). The models developed with ground hay were more robust and accurate than those with unground hay based on calibration model performance indexes such as R2 (coefficient of determination), standard error, and RPD. Although the R2 of calibration models was mainly greater than 0.90 across the feed value indexes, the R2 of cross-validations was much lower. The R2 of cross-validation varies depending on feed value indexes, which ranged from 0.61 to 0.81 in alfalfa, and from 0.62 to 0.95 in timothy. Estimation of feed values in imported hay can be achievable by the calibrated NIRS. However, the NIRS calibration models must be improved by including a broader range of imported hay samples in the modeling. Conclusion: Although the analysis accuracy of NIRS was substantially higher when calibration models were developed with ground samples, less sample preparation will be more advantageous for achieving rapid delivery of hay sample analysis results. Therefore, further research warrants investigating the level of sample preparations compromising analysis accuracy by NIRS.

CoAID+ : COVID-19 News Cascade Dataset for Social Context Based Fake News Detection (CoAID+ : 소셜 컨텍스트 기반 가짜뉴스 탐지를 위한 COVID-19 뉴스 파급 데이터)

  • Han, Soeun;Kang, Yoonsuk;Ko, Yunyong;Ahn, Jeewon;Kim, Yushim;Oh, Seongsoo;Park, Heejin;Kim, Sang-Wook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.4
    • /
    • pp.149-156
    • /
    • 2022
  • In the current COVID-19 pandemic, fake news and misinformation related to COVID-19 have been causing serious confusion in our society. To accurately detect such fake news, social context-based methods have been widely studied in the literature. They detect fake news based on the social context that indicates how a news article is propagated over social media (e.g., Twitter). Most existing COVID-19 related datasets gathered for fake news detection, however, contain only the news content information, but not its social context information. In this case, the social context-based detection methods cannot be applied, which could be a big obstacle in the fake news detection research. To address this issue, in this work, we collect from Twitter the social context information based on CoAID, which is a COVID-19 news content dataset built for fake news detection, thereby building CoAID+ that includes both the news content information and its social context information. The CoAID+ dataset can be utilized in a variety of methods for social context-based fake news detection, thus would help revitalize the fake news detection research area. Finally, through a comprehensive analysis of the CoAID+ dataset in various perspectives, we present some interesting features capable of differentiating real and fake news.