• 제목/요약/키워드: Keywords Similarity

검색결과 91건 처리시간 0.023초

키워드를 기반으로 마이너와 코사인 유사도를 이용한 컴퓨터 네트워크 관련 컨퍼런스 분석 (The Analysis of the Conferences for the Computer Network Using the Miner and the Cosine Similarity based upon Keywords)

  • 권영빈;이승도;양현;주요한
    • 한국IT서비스학회지
    • /
    • 제11권1호
    • /
    • pp.223-238
    • /
    • 2012
  • We have been provided with a plenty of information about IT through the conferences. However, it is hard to find enough information or the latest trends from conferences because there are too many conferences. In this situation, we analyzed the latest trends related to the field of IT by exploiting the Netminer which is one of the software for analysis of social networks and measuring the Cosine Similarity between conferences, based upon keywords which are included in the conferences. We analyzed keywords of 24 conferences related to the computer network part of the IEEE (Institute of Electrical and Electronics Engineers) in the case of foreign conferences. We also analyze keywords of the KIISE (Korean Institute of Information Scientists and Engineers) conferences in the case of domestic conferences, during 2009-2010. We identified the trends through the frequency of keywords, the change of top 10 keywords ranking and the similarity between conferences.

토픽 식별성 향상을 위한 키워드 재구성 기법 (Keyword Reorganization Techniques for Improving the Identifiability of Topics)

  • 윤여일;김남규
    • 한국IT서비스학회지
    • /
    • 제18권4호
    • /
    • pp.135-149
    • /
    • 2019
  • Recently, there are many researches for extracting meaningful information from large amount of text data. Among various applications to extract information from text, topic modeling which express latent topics as a group of keywords is mainly used. Topic modeling presents several topic keywords by term/topic weight and the quality of those keywords are usually evaluated through coherence which implies the similarity of those keywords. However, the topic quality evaluation method based only on the similarity of keywords has its limitations because it is difficult to describe the content of a topic accurately enough with just a set of similar words. In this research, therefore, we propose topic keywords reorganizing method to improve the identifiability of topics. To reorganize topic keywords, each document first needs to be labeled with one representative topic which can be extracted from traditional topic modeling. After that, classification rules for classifying each document into a corresponding label are generated, and new topic keywords are extracted based on the classification rules. To evaluated the performance our method, we performed an experiment on 1,000 news articles. From the experiment, we confirmed that the keywords extracted from our proposed method have better identifiability than traditional topic keywords.

워드 임베딩(Word Embedding)을 활용한 최적의 키워드 추출 및 검색 방법 연구 (A Study on the Optimal Search Keyword Extraction and Retrieval Technique Generation Using Word Embedding)

  • 이정인;안진희;고경택;김영석
    • 한국지반신소재학회논문집
    • /
    • 제22권2호
    • /
    • pp.47-54
    • /
    • 2023
  • 본 논문에서는 자료 조사를 위한 최적의 키워드 추출 및 검색 방법을 제안하였으며, 북한 건설 관련 동향 파악을 예시로 제안 방법을 검증하였다. 대표적인 국내 언론 플랫폼인 빅카인즈(BigKinds)를 활용하여 표본 기사를 선정하고 키워드를 추출하였다. 추출된 키워드는 워드 임베딩(Word Embedding)을 활용하여 벡터화하였으며, 이를 토대로 코사인 유사도(Cosine Similarity)를 통해 추출된 키워드 간의 유사도를 검사하였다. 또한 상위 빈도수 10개에 대한 키워드를 기준으로 유사도 0.5 이상인 키워드들을 군집화하였다. 각 군집들은 빅카인즈 검색 양식에 맞추어 군집 내부 키워드 간에는 'OR', 군집 간에는 'AND'로 형성하였다. 심층 분석 결과, 본래 목적에 맞는 유의미한 기사들이 추출되었음을 확인할 수 있었다. 기존의 분류체계 및 검색 양식을 변형시키지 않은 상태에서 사용자의 세부 목적을 충족시키는 자료 조사·분류가 가능하게 되었다는 점에서 의의를 갖는다.

Word2Vec 기반의 의미적 유사도를 고려한 웹사이트 키워드 선택 기법 (Web Site Keyword Selection Method by Considering Semantic Similarity Based on Word2Vec)

  • 이동훈;김관호
    • 한국전자거래학회지
    • /
    • 제23권2호
    • /
    • pp.83-96
    • /
    • 2018
  • 문서를 대표하는 키워드를 추출하는 것은 문서의 정보를 빠르게 전달할 수 있을 뿐만 아니라 문서의 검색, 분류, 추천시스템 등의 자동화서비스에 유용하게 사용 될 수 있어 매우 중요하다. 그러나 웹사이트 문서에서 출현하는 단어의 빈도수, 단어의 동시출현관계를 통한 그래프 알고리즘 등의 기반으로 키워드를 추출할 경우 웹페이지 구조상 잠재적으로 주제와 관련이 없는 다양한 단어를 포함하고 있는 문제점과 한국어 형태소 분석의 정확성이 떨어지는 형태소 분석기 성능의 한계점 때문에 의미적인 키워드를 추출하는데 어려움이 존재한다. 따라서 본 논문에서는 의미적 단어 위주로 구축된 후보키워드들의 집합과 의미적 유사도 기반의 후보 키워드를 선택하는 방법으로써 의미적 키워드를 추출하지 못하는 문제점과 형태소 분석의 정확성이 떨어지는 문제점을 해결하고 일관성 없는 키워드를 제거하는 필터링 과정을 통해 최종 의미적 키워드를 추출하는 기법을 제안한다. 실 중소기업 웹페이지를 통한 실험 결과, 본 연구에서 제안한 기법의 성능이 통계적 유사도 기반의 키워드 선택기법보다 34.52% 향상된 것을 확인하였다. 따라서 단어 간의 의미적 유사성을 고려하고 일관성 없는 키워드를 제거함으로써 문서에서 키워드를 추출하는 성능을 향상시켰음을 확인하였다.

Comparison of User-generated Tags with Subject Descriptors, Author Keywords, and Title Terms of Scholarly Journal Articles: A Case Study of Marine Science

  • Vaidya, Praveenkumar;Harinarayana, N.S.
    • Journal of Information Science Theory and Practice
    • /
    • 제7권1호
    • /
    • pp.29-38
    • /
    • 2019
  • Information retrieval is the challenge of the Web 2.0 world. The experiment of knowledge organisation in the context of abundant information available from various sources proves a major hurdle in obtaining information retrieval with greater precision and recall. The fast-changing landscape of information organisation through social networking sites at a personal level creates a world of opportunities for data scientists and also library professionals to assimilate the social data with expert created data. Thus, folksonomies or social tags play a vital role in information organisation and retrieval. The comparison of these user-created tags with expert-created index terms, author keywords and title words, will throw light on the differentiation between these sets of data. Such comparative studies show revelation of a new set of terms to enhance subject access and reflect the extent of similarity between user-generated tags and other set of terms. The CiteULike tags extracted from 5,150 scholarly journal articles in marine science were compared with corresponding Aquatic Science and Fisheries Abstracts descriptors, author keywords, and title terms. The Jaccard similarity coefficient method was employed to compare the social tags with the above mentioned wordsets, and results proved the presence of user-generated keywords in Aquatic Science and Fisheries Abstracts descriptors, author keywords, and title words. While using information retrieval techniques like stemmer and lemmatization, the results were found to enhance keywords to subject access.

키워드의 유사도와 가중치를 적용한 연관 문서 추천 방법 (Method of Related Document Recommendation with Similarity and Weight of Keyword)

  • 임명진;김재현;신주현
    • 한국멀티미디어학회논문지
    • /
    • 제22권11호
    • /
    • pp.1313-1323
    • /
    • 2019
  • With the development of the Internet and the increase of smart phones, various services considering user convenience are increasing, so that users can check news in real time anytime and anywhere. However, online news is categorized by media and category, and it provides only a few related search terms, making it difficult to find related news related to keywords. In order to solve this problem, we propose a method to recommend related documents more accurately by applying Doc2Vec similarity to the specific keywords of news articles and weighting the title and contents of news articles. We collect news articles from Naver politics category by web crawling in Java environment, preprocess them, extract topics using LDA modeling, and find similarities using Doc2Vec. To supplement Doc2Vec, we apply TF-IDF to obtain TC(Title Contents) weights for the title and contents of news articles. Then we combine Doc2Vec similarity and TC weight to generate TC weight-similarity and evaluate the similarity between words using PMI technique to confirm the keyword association.

텍스트 마이닝 기법을 활용한 어깨 재활 연구분야 동향과 키워드 모델링 (The Research Trends and Keywords Modeling of Shoulder Rehabilitation using the Text-mining Technique)

  • 김준희;정성훈;황의재
    • 대한물리의학회지
    • /
    • 제16권2호
    • /
    • pp.91-100
    • /
    • 2021
  • PURPOSE: This study analyzed the trends and characteristics of shoulder rehabilitation research through keyword analysis, and their relationships were modeled using text mining techniques. METHODS: Abstract data of 10,121 articles in which abstracts were registered on the MEDLINE of PubMed with 'shoulder' and 'rehabilitation' as keywords were collected using python. By analyzing the frequency of words, 10 keywords were selected in the order of the highest frequency. Word-embedding was performed using the word2vec technique to analyze the similarity of words. In addition, the groups were classified and analyzed based on the distance (cosine similarity) through the t-SNE technique. RESULTS: The number of studies related to shoulder rehabilitation is increasing year after year, keywords most frequently used in relation to shoulder rehabilitation studies are 'patient', 'pain', and 'treatment'. The word2vec results showed that the words were highly correlated with 12 keywords from studies related to shoulder rehabilitation. Furthermore, through t-SNE, the keywords of the studies were divided into 5 groups. CONCLUSION: This study was the first study to model the keywords and their relationships that make up the abstracts of research in the MEDLINE of Pub Med related to 'shoulder' and 'rehabilitation' using text-mining techniques. The results of this study will help increase the diversifying research topics of shoulder rehabilitation studies to be conducted in the future.

의사결정나무를 활용한 온라인 소비자 리뷰 평가에 영향을 주는 핵심 키워드 도출 연구: 별점과 좋아요를 중심으로 (Core Keywords Extraction forEvaluating Online Consumer Reviews Using a Decision Tree: Focusing on Star Ratings and Helpfulness Votes)

  • 민경수;유동희
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제32권3호
    • /
    • pp.133-150
    • /
    • 2023
  • Purpose This study aims to develop classification models using a decision tree algorithm to identify core keywords and rules influencing online consumer review evaluations for the robot vacuum cleaner on Amazon.com. The difference from previous studies is that we analyze core keywords that affect the evaluation results by dividing the subjects that evaluate online consumer reviews into self-evaluation (star ratings) and peer evaluation (helpfulness votes). We investigate whether the core keywords influencing star ratings and helpfulness votes vary across different products and whether there is a similarity in the core keywords related to star ratings or helpfulness votes across all products. Design/methodology/approach We used random under-sampling to balance the dataset. We progressively removed independent variables based on decreasing importance through backwards elimination to evaluate the classification model's performance. As a result, we identified classification models that best predict star ratings and helpfulness votes for each product's online consumer reviews. Findings We have identified that the core keywords influencing self-evaluation and peer evaluation vary across different products, and even for the same model or features, the core keywords are not consistent. Therefore, companies' producers and marketing managers need to analyze the core keywords of each product to highlight the advantages and prepare customized strategies that compensate for the shortcomings.

프로그램 코드 분석을 위한 유사도 측정 및 가시화 기법 (A Similarity Measurement and Visualization Method for the Analysis of Program Code)

  • 이영주;이정진
    • 한국멀티미디어학회논문지
    • /
    • 제16권7호
    • /
    • pp.802-809
    • /
    • 2013
  • 본 논문에서는 프로그래밍 언어에 정의되는 지정자와 키워드가 프로그램 코드 상에서 연속적인 패턴으로 나타나게 될 때, 해당 연속 패턴들의 빈도와 길이를 측정하여 두 코드 사이의 유사성을 측정하는 기법을 제안한다. 또한, 이러한 분석 결과를 정형적 개념 분석 기법을 이용하여 가시화하는 기법을 제안한다. 제안 기법은 기존의 유사도 측정 기법에서는 고려하지 않았던 단어 인접성을 유사도 측정에 반영한다. 함수 단위로 지정자와 키워드 패턴을 이용하여 함수의 호출 순서나 수행 순서에 상관없이 표절을 탐지할 수 있다. 또한, 유사도 측정 결과는 정형적 개념 분석 기법을 이용하여 격자(lattice)로 시각화되어 사용자의 이해도를 높일 수 있다. 실험 결과 제안 기법은 96%의 표절 탐지 성공률을 보여주었다. 제안 기법은 프로그램 코드 뿐만 아니라 일반 문서의 분석에도 적용될 수 있다.

퍼지 추론을 이용한 소수 문서의 대표 키워드 추출 (Representative Keyword Extraction from Few Documents through Fuzzy Inference)

  • 노순억;김병만;허남철
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.117-120
    • /
    • 2001
  • In this work, we propose a new method of extracting and weighting representative keywords(RKs) from a few documents that might interest a user. In order to extract RKs, we first extract candidate terms and then choose a number of terms called initial representative keywords (IRKS) from them through fuzzy inference. Then, by expanding and reweighting IRKS using term co-occurrence similarity, the final RKs are obtained. Performance of our approach is heavily influenced by effectiveness of selection method of IRKS so that we choose fuzzy inference because it is more effective in handling the uncertainty inherent in selecting representative keywords of documents. The problem addressed in this paper can be viewed as the one of calculating center of document vectors. So, to show the usefulness of our approach, we compare with two famous methods - Rocchio and Widrow-Hoff - on a number of documents collections. The results show that our approach outperforms the other approaches.

  • PDF