International Journal of Internet, Broadcasting and Communication
/
제8권4호
/
pp.19-25
/
2016
There are many free applications that need users to sign up before they can use the applications nowadays. It is difficult to choose a suitable password for your account. If the password is too complicated, then it is hard to remember it. However, it is easy to be intruded by other users if we use a very simple password. Therefore, biometric-based approach is one of the solutions to solve the issue. The biometric-based approach includes keystroke dynamics on keyboard, mice, or mobile devices, gait analysis and many more. The approach can integrate with any appropriate machine learning algorithm to learn a user typing behavior for authentication system. Preprocessing phase is one the important role to increase the performance of the algorithm. In this paper, we have proposed ensemble-by-session (EBS) method which to operate the preprocessing phase before the training phase. EBS distributes the dataset into multiple sub-datasets based on the session. In other words, we split the dataset into session by session instead of assemble them all into one dataset. If a session is considered as one day, then the sub-dataset has all the information on the particular day. Each sub-dataset will have different information for different day. The sub-datasets are then trained by a machine learning algorithm. From the experimental result, we have shown the improvement of the performance for each base algorithm after the preprocessing phase.
Password typing is the most wifely ued identity verification method in computer security domain. However, due to its simplicity, it is vulnerable to imposter attacks Keystroke dynamics adds a shield to password. Discriminating imposters from owners is a novelty detection problem. Auto-Associative Multilayer Perceptron (AaMLP) has teen proved to be a good novelty detector. However, the wifely used 2-layer AaMLP cannot identify nonlinear boundaries, which can result in serious problems in computer security. In this paper, a nonlinear model, i.e. 4-layer AaMLP, is proposed to serve as the novelty detector, which can remedy the limitations of 2-layer AaMLP.
이러닝 시스템의 가장 중요한 부분 중 하나가 인증이다. 왜냐하면 적법한 학습자가 학습 시스템에 접속해서 학습하고, 평가 받는 것은 매우 중요하기 때문이다. 하지만, 대부분의 시스템이 학습자의 아이디와 패스워드를 사용한 인증을 사용하고 있다. 이 경우에 해커가 어렵지 않게 아이디와 패스워드를 해킹할 수 있다. 또한, 학습자가 자신의 정보를 다른 동료에게 주어 대신 평가를 받는 수 있다. 이와 같은 문제를 해결하기 위해서는 생체 인증 방법이 보완으로 필요하다. 이와 같은 방법은 상대적으로 많은 비용이 들고 또한 거부감이 있다. 따라서, 본 논문에서는 키스트로크 방법을 이용하여 학습자가 적법한 학습자인가를 판단하는 방법을 제안하였다. 또한, 키스트로크 시스템의 성능을 위해서 통계와 신경망을 적용하였다. 그 결과, 키스트로크의 인증에서 FRR과 FAR의 성능이 개선되었다.
오늘날 패스워드 인증과 키 분배는 컴퓨터 환경에서 중요하다. 패스워드 기반의 시스템은 패스워드를 사용자가 기억하기 쉽다는 장점 때문에 널리 사용 되고 있다. 하지만, 패스워드는 작은 공간에서 선택되어지기 때문에 패스워드 추측 공격을 포함한 다양한 공격에 취약점을 나타낸다. 본 논문에서는 최근에 제안된 새로운 패스워드 인증 기법을 분석하고, 서버 위장 공격, 서버 속임 공격과 패스워드 추측 공격에 취약하다는 것을 보인다. 또한, 패스워드 기반의 기법을 설계할 때는 주의해야 한다는 점에 대해 논하고, IEEE 1363.2와 같은 표준을 사용해 CK 프로토콜을 강하게 하는 법에 대해 간단히 보인다.
최근 핸드폰 같은 휴대용 단말기의 용도는 통화 이외에도 예금, 증권, 결제, 신원확인 등과 같은 다양한 어플리케이션으로 발전하고 있다. 본 논문에서는 키스트로크 기반의 사용자 인증을 이용한 모바일 보안강화 방안에 대하여 논의한다. 키스트로크 다이나믹스 패턴분석은 사용자가 특정 문자열을 타이핑할 때의 입력 패턴을 고려한 분석 방법이다. 본 연구는 휴대단말기의 짧은 암호사용의 문제점을 극복하기 위하여 인공리듬과 템포 큐를 활용하였으며, 높은 분류 성능을 보여주었다.
Ensemble에서 feature selection은 각 classifier의 학습할 데이터의 변수를 다르게 하여 diversity를 높이며, 이것은 일반적인 성능향상을 가져온다. Feature selection을 할 때 쓰는 방법 중의 하나가 Genetic Algorithm (GA)이며, GA-SVM은 GA를 기본으로 한 wrapper based feature selection mechanism으로 response model과 keystroke dynamics identity verification model을 만들 때 좋은 성능을 보였다. 하지만 population 안의 후보들간의 diversity를 보장해주지 못한다는 단점 때문에 classifier들의 accuracy와 diversity의 균형을 맞추기 위한 heuristic parameter setting이 존재하며 이를 조정해야만 하였다. 우리는 GA-SVM 알고리즘을 바탕으로, population안 후보들의 fitness를 측정할 때 accuracy와 diversity 둘 다 고려하는 fitness function을 도입하여 추가적인 classifier 선택 작업을 제거하면서 성능을 유지시키는 방안을 연구하였으며 결과적으로 알고리즘의 복잡성을 줄이면서도 모델의 성능을 유지시켰다.
키스트로크 다이나믹스 사용자 인증은 행위 기반 인증 방법 중의 하나로써, 사용자가 입력하는 비밀번호 혹은 PIN번호의 패턴을 분석하여 사용자를 인증한다. 비밀번호나 PIN번호가 다른 사용자에게 노출되어도 입력 패턴을 분석하여 사용자를 인증함으로써 지식기반(what you know) 인증의 단점을 보완할 수 있다. 하지만 사용자의 입력 패턴이 항상 일정하지 않고, 사용자별 터치하는 방법이 모두 다르기 때문에 모든 사용자에게서 동일한 특징을 추출하여 그 사용자의 패턴을 생성하고 인증 수단으로 사용하기에는 한계가 있다. 이에 본 논문에서는 사용자별 맞춤형 특징 집합과 전체 특징과의 사용자 인증 성능 변화를 실험을 통해 확인한다. 사용자별 맞춤형 특징이 전체 특징을 사용한 경우보다 평균적으로 EER 6% 이상의 성능 향상이 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권10호
/
pp.2844-2861
/
2023
Internet is the most prevailing word being used nowadays. Over the years, people are becoming more dependent on the internet as it makes their job easier. This became a part of everyone's life as a means of communication in almost every area like financial transactions, education, and personal-health operations. A lot of data is being converted to digital and made online. Many researchers have proposed different authentication factors - biometric and/or non-biometric authentication factors - as the first line of defense to secure online data. Among all those factors, passwords and passphrases are being used by many users around the world. However, the usability of these factors is low. Also, the passwords are easily susceptible to brute force and dictionary attacks. This paper proposes the generation of a novel passcode from the hybrid authentication factor - sound. The proposed passcode is evaluated for its strength to resist brute-force and dictionary attacks using the Shannon entropy and Passcode (or password) entropy formulae. Also, the passcode is evaluated for its usability. The entropy value of the proposed is 658.2. This is higher than that of other authentication factors. Like, for a 6-digit pin - the entropy value was 13.2, 101.4 for Password with Passphrase combined with Keystroke dynamics and 193 for fingerprint, and 30 for voice biometrics. The proposed novel passcode is far much better than other authentication factors when compared with their corresponding strength and usability values.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.