• Title/Summary/Keyword: Keys

Search Result 1,089, Processing Time 0.022 seconds

Design of a Secure and Fast Handoff Method for Mobile If with AAA Infrastructure (AAA 기반 Mobile IP 환경에서 안전하고 빠른 핸드오프 기법 설계)

  • 김현곤
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.1
    • /
    • pp.79-89
    • /
    • 2004
  • Mobile IP Low Latency Handoffs allow greater support for real-time services on a Mobile W network by minimizing the period of time when a mobile node is unable to send or receive IP packets due to the delay in the Mobile IP Registration process. However, on Mobile IP network with AAA servers that are capable of performing Authentication, Authorization, and Accounting(AAA) services, every Registration has to be traversed to the home network to achieve new session keys, that are distributed by home AAA server, for a new Mobile IP session. This communication delay is the time taken to re-authenticate the mobile node and to traverse between foreign and home network even if the mobile node has been previously authorized to old foreign agent. In order to reduce these extra time overheads, we present a method that performs Low Latency Handoffs without requiring funker involvement by home AAA server. The method re-uses the previously assigned session keys. To provide confidentiality and integrity of session keys in the phase of key exchange between agents, it uses a key sharing method by gateway foreign agent that Performs a ousted thirty party. The Proposed method allows the mobile node to perform Low Latency Handoffs with fast as well as secure operation

Implementation of Key Recovery Model based on XML for B2B (B2B를 위한 XML기반의 키 복구 구현)

  • 김주한;문기영;손승원
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.5
    • /
    • pp.53-61
    • /
    • 2002
  • In this paper, we will introduce a design of key recovery based on XML can be used in B2B environment. XML Digital Signature and XML Encryption that are defied recently as standards by W3C(World Wide Web Consortium) are deployed to sign/verify or encrypt/decrypt documents for electronic commerce and keys to store/load at/from key recovery server. The result of signature or encryption is always an XML document and all messages used in this key recovery system are also XML documents. It enables to adapt transparently this key recovery system to legacy XML applications and electronic commerce platforms based on XML. And its method for key recovery is key escrow. One of the characteristics of this key recovery is that one enterprise can recover keys of some documents for electronic commerce from external key recovery system in other enterprises related with them and also recover keys from owns.

ELKH, Efficient Group Key Management Protocol Using One-Way Function and XOR (일방향 함수와 XOR을 이용한 효율적인 그룹키 관리 프로토콜: ELKH)

  • 권정옥;황정연;김현정;이동훈;임종인
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.6
    • /
    • pp.93-112
    • /
    • 2002
  • Since the multicast group which is composed of various members is dynamic, members of the group frequently join or leave. So, for a new session, group keys are efficiently updated and distributed. In this paper, we describe very simple and new efficient logical key hierarchy(ELKH) protocol which is based on an one-way function. In the previous schemes, when the group controller distributes new created keys or updated keys to the members the information is usally encryted and then transmited over a multicast channel. But ELKH secretes the multicast message by using the one-way function and XOR operator instead of encrypting it. Hence our main construction improves the computational efficiency required from the group controller and group memebers while doesn't increase size of re-keying message when compared to $EHBT^{[12]}$. Assuming the security of an underlying one-way function, we prove that our scheme satisfies forward secrecy and backward secrecy.

Construction of an Asymmetric Traitor Tracing Schemes with Anonymity (익명성을 보장하는 비대칭 공모자 추적 기법의 설계)

  • Lee, Moonsik;Kang, SunBu;Lee, Juhee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.6
    • /
    • pp.1231-1242
    • /
    • 2012
  • Traitor tracing schemes deter traitors from sharing their private keys by tracing at least one of the subscribers who were implicated in the construction of a pirate decoder. In general, it is assumed that the system manager in the scheme generates and distributes the subscribers' private key. But if the system manager knows the subscribers' private keys, he cannot convince a third party of a certain subscriber's piracy. To solve this problem, the system manager should not know the whole parts of subscribers' private keys and this leads to researches of asymmetric schemes. Moreover for the purpose of enhancing subscribers' privacy, there were two proposals of introducing anonymity onto asymmetric traitor tracing schemes, but one of them turned out to be a failure. In this paper, we point out that the other proposal also has flaws. We consider how to introduce anonymity to traitor tracing schemes, as a result, we suggest a new framework which is practical. We also construct a scheme by using an anonymous credential system and an asymmetric traitor tracing scheme. We prove the security of our scheme and consider the typical applications.

A Round Reduction Attack on Triple DES Using Fault Injection (오류 주입을 이용한 Triple DES에 대한 라운드 축소 공격)

  • Choi, Doo-Sik;Oh, Doo-Hwan;Bae, Ki-Seok;Moon, Sang-Jae;Ha, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.2
    • /
    • pp.91-100
    • /
    • 2011
  • The Triple Data Encryption Algorithm (Triple DES) is an international standard of block cipher, which composed of two encryption processes and one decryption process of DES to increase security level. In this paper, we proposed a Differential Fault Analysis (DFA) attack to retrieve secret keys using reduction of last round execution for each DES process in the Triple DES by fault injections. From the simulation result for the proposed attack method, we could extract three 56-bit secret keys using exhaustive search attack for $2^{24}$ candidate keys which are refined from about 9 faulty-correct cipher text pairs. Using laser fault injection experiment, we also verified that the proposed DFA attack could be applied to a pure microprocessor ATmega 128 chip in which the Triple DES algorithm was implemented.

An Efficient LWE-Based Reusable Fuzzy Extractor (효율적인 LWE 기반 재사용 가능한 퍼지 추출기)

  • Kim, Juon;Lee, Kwangsu;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.779-790
    • /
    • 2022
  • Fuzzy extractor is a biometric encryption that generates keys from biometric data where input values are not always the same due to the noisy data, and performs authentication securely without exposing biometric information. However, if a user registers biometric data on multiple servers, various attacks on helper data which is a public information used to extract keys during the authentication process of the fuzzy extractor can expose the keys. Therefore many studies have been conducted on reusable fuzzy extractors that are secure to register biometric data of the same person on multiple servers. But as the key length increases, the studies presented so far have gradually increased the number of key recovery processes, making it inefficient and difficult to utilize in security systems. In this paper, we design an efficient and reusable fuzzy extractor based on LWE with the same or similar number of times of the authentication process even if the key length is increased, and show that the proposed algorithm is reusably-secure defined by Apon et al.[5].

Quantum Cryptanalysis for DES Through Attack Cost Estimation of Grover's Algorithm (Grover 알고리즘 공격 비용 추정을 통한 DES에 대한 양자 암호 분석)

  • Jang, Kyung-bae;Kim, Hyun-Ji;Song, Gyeong-Ju;Sim, Min-Ju;Woo, Eum-Si;Seo, Hwa-Jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1149-1156
    • /
    • 2021
  • The Grover algorithm, which accelerates the brute force attack, is applicable to key recovery of symmetric key cryptography, and NIST uses the Grover attack cost for symmetric key cryptography to estimate the post-quantum security strength. In this paper, we estimate the attack cost of Grover's algorithm by implementing DES as a quantum circuit. NIST estimates the post-quantum security strength based on the attack cost of AES for symmetric key cryptography using 128, 192, and 256-bit keys. The estimated attack cost for DES can be analyzed to see how resistant DES is to attacks from quantum computers. Currently, since there is no post-quantum security index for symmetric key ciphers using 64-bit keys, the Grover attack cost for DES using 64-bit keys estimated in this paper can be used as a standard. ProjectQ, a quantum programming tool, was used to analyze the suitability and attack cost of the quantum circuit implementation of the proposed DES.

Development of wearable device with smart key function and convergence of personal bio-certification and technology using ECG signal (심전도 신호를 이용한 개인 바이오인증 기술 융합과 smart key 기능이 탑재된 wearable device 개발)

  • Bang, Gul-Won
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.637-642
    • /
    • 2022
  • Self-authentication technology using electrocardiogram (ECG) signals is drawing attention as a self-authentication technology that can replace existing bio-authentication. A device that recognizes a digital electronic key can be mounted on a vehicle to wirelessly exchange data with a car, and a function that can lock or unlock a car door or start a car by using a smartphone can be controlled through a smartphone. However, smart keys are vulnerable to security, so smart keys applied with bio-authentication technology were studied to solve this problem and provide driver convenience. A personal authentication algorithm using electrocardiogram was mounted on a watch-type wearable device to authenticate bio, and when personal authentication was completed, it could function as a smart key of a car. The certification rate was 95 per cent achieved. Drivers do not need to have a smart key, and they propose a smart key as an alternative that can safely protect it from loss and hacking. Smart keys using personal authentication technology using electrocardiogram can be applied to various fields through personal authentication and will study methods that can be applied to identification devices using electrocardiogram in the future.

Analysis of Latency and Computation Cost for AES-based Whitebox Cryptography Technique (AES 기반 화이트박스 암호 기법의 지연 시간과 연산량 분석)

  • Lee, Jin-min;Kim, So-yeon;Lee, Il-Gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.115-117
    • /
    • 2022
  • Whitebox encryption technique is a method of preventing exposure of encryption keys by mixing encryption key information with a software-based encryption algorithm. Whitebox encryption technique is attracting attention as a technology that replaces conventional hardware-based security encryption techniques by making it difficult to infer confidential data and keys by accessing memory with unauthorized reverse engineering analysis. However, in the encryption and decryption process, a large lookup table is used to hide computational results and encryption keys, resulting in a problem of slow encryption and increased memory size. In particular, it is difficult to apply whitebox cryptography to low-cost, low-power, and light-weight Internet of Things products due to limited memory space and battery capacity. In addition, in a network environment that requires real-time service support, the response delay time increases due to the encryption/decryption speed of the whitebox encryption, resulting in deterioration of communication efficiency. Therefore, in this paper, we analyze whether the AES-based whitebox(WBC-AES) proposed by S.Chow can satisfy the speed and memory requirements based on the experimental results.

  • PDF

Experimental Study on Bond Behavior of 1/12.5 Scale Model of the Steel Tubular Joint Connection Subjected to Compressive Loads (압축하중을 받는 1/12.5 축소모형 강관 연결부의 부착전단 거동에 대한 실험적 연구)

  • Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.19-26
    • /
    • 2024
  • In this study, the compressive behavior of a 1/12.5 scale model of a wind tower support structure connection was experimentally analyzed. A high-performance cementitious grout with a compressive strength of 140 MPa was used to fill the connection, and experiments were conducted with shear key spacing, the shape, and connection length as variables. When the number of shear keys in the connection is the same, the smaller the spacing of the shear keys than the length of the connection, the higher the shear strength, and for the same spacing and connection length, the higher the height of the shear keys, the higher the strength. In addition, it was found that the strength showed a linear behaviour until the connection slip reached 1.0 mm, and it reached the maximum strength at 7.0 mm connection slip showing a non-linear behaviour as the load increased. It was found that the failure mode changed from interfacial shear failure to grout failure as the strength increased according to the shape and spacing of the shear key, and brittle failure did not occur due to steel fibers.