• 제목/요약/키워드: Key-frame selection

검색결과 38건 처리시간 0.022초

반복 과정을 통한 율-제한 주요 화명 선택 기법 (Rate-Constrained Key Frame Selection Method using Iteration)

  • 이훈철;김성대
    • 대한전자공학회논문지SP
    • /
    • 제39권4호
    • /
    • pp.388-398
    • /
    • 2002
  • 주요 화면은 보다 적은 양의 데이터를 사용해서 비디오가 갖는 시각적 내용물의 변화량을 효과적으로 표현하기 위해 많이 사용된다. 이와 같은 비디오 표현 방식은 대역폭이나 저장 용량이 제한된 상황에 적합하다. 이 경우 대역폭이나 저장 용량에 따라 주요 화면의 개수를 조절하는 능력은 주요 화면 선택 기법의 중요한 필요 사항 중 하나다. 본 논문에서는 주요 화면의 개수가 제한 조건일 때 순차적인 주요 화면을 찾는 방법을 제안한다. 제안하는 기법은 먼저 원하는 개수의 초기 주요 화면을 미리 선택하고 이들이 대표하는 서로 중복되지 않는 시구간을 정한 후 반복 과정을 통해 주요 화면의 위치와 시구간의 크기를 조절하면서 왜곡 값이 최소가 되도록 주요 화면과 시구간을 찾는다. 실험 결과 제안하는 방법이 선택하는 주요 화면들은 율-왜곡 관점에서 기존의 방법보다 우수하고 인간의 시각 인지와도 일치함을 알 수 있었다.

프레임간 히스토그램 차이를 이용한 개선된 대표프레임 추출 알고리즘 (An Improved key Frame Selection Algorithm Based on Histogram Difference Between Frames)

  • 정지현;전승철;박성한
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(3)
    • /
    • pp.137-140
    • /
    • 2000
  • In this paper, we propose as new algorithm for the selection of key frames in a given video. For the selected key frames to be well defined, the selected key frames need to spread out on the whole temporal domain of the given video and guaranteed not to be duplicate. For this purpose, we take the first frame of each shot of the video as the candidate key frame to represent the video. To reduce the overall processing time, we eliminate some candidate key frames which are visually indistinct in the histogram difference. The key frames are then selected using a clustering processing based on the singly linked hierarchical tree. To make the selected key frames be distributed evenly on the whole video, the deviation and time difference between the selected key frames are used. The simulation results demonstrate that our method provides the better performance compared with previous methods.

  • PDF

Effective Hand Gesture Recognition by Key Frame Selection and 3D Neural Network

  • Hoang, Nguyen Ngoc;Lee, Guee-Sang;Kim, Soo-Hyung;Yang, Hyung-Jeong
    • 스마트미디어저널
    • /
    • 제9권1호
    • /
    • pp.23-29
    • /
    • 2020
  • This paper presents an approach for dynamic hand gesture recognition by using algorithm based on 3D Convolutional Neural Network (3D_CNN), which is later extended to 3D Residual Networks (3D_ResNet), and the neural network based key frame selection. Typically, 3D deep neural network is used to classify gestures from the input of image frames, randomly sampled from a video data. In this work, to improve the classification performance, we employ key frames which represent the overall video, as the input of the classification network. The key frames are extracted by SegNet instead of conventional clustering algorithms for video summarization (VSUMM) which require heavy computation. By using a deep neural network, key frame selection can be performed in a real-time system. Experiments are conducted using 3D convolutional kernels such as 3D_CNN, Inflated 3D_CNN (I3D) and 3D_ResNet for gesture classification. Our algorithm achieved up to 97.8% of classification accuracy on the Cambridge gesture dataset. The experimental results show that the proposed approach is efficient and outperforms existing methods.

카메라 재투영 오차로부터 중요영상 선택을 이용한 3차원 재구성 (3D Reconstruction using the Key-frame Selection from Reprojection Error)

  • 서융호;김상훈;최종수
    • 대한전자공학회논문지SP
    • /
    • 제45권1호
    • /
    • pp.38-46
    • /
    • 2008
  • 중요영상 선택 알고리즘은 다수의 비교정 영상으로부터 3차원 재구성을 위해 필수 영상을 선택하는 과정이다. 또한 3차원 재구성을 위해 영상들 사이의 카메라 자동교정(auto-calibration)이 필수적이다. 본 논문은 재구성 오차를 최대한 줄이는 최적의 영상을 선택하는 중요영상 선택 알고리즘을 제안한다. 선택된 중요영상들 사이의 카메라 투영행렬은 카메라 전자동교정(full-auto-calibration)과정을 통하여 추정한다. 정확하게 추정된 카메라 투영행렬로부터 대수학적 유도를 이용하여 기본행렬(fundamental matrix)을 계산하고, 이로부터 잘못된 대응점들을 제거하여 최종적으로 3차원 데이터를 얻는다. 실험 결과는 제안한 중요영상 선택 알고리즘이 다른 알고리즘에 비해 적은 시간이 소요되며, 재구성된 3차원 데이터의 오차가 가장 작았다. 대수학적 유도로부터 얻어낸 기본행렬은 다른 알고리즘에 비해 매우 짧은 시간이 소요 되며 평균 오차는 비슷한 결과를 갖는다.

Fast key-frame extraction for 3D reconstruction from a handheld video

  • Choi, Jongho;Kwon, Soonchul;Son, Kwangchul;Yoo, Jisang
    • International journal of advanced smart convergence
    • /
    • 제5권4호
    • /
    • pp.1-9
    • /
    • 2016
  • In order to reconstruct a 3D model in video sequences, to select key frames that are easy to estimate a geometric model is essential. This paper proposes a method to easily extract informative frames from a handheld video. The method combines selection criteria based on appropriate-baseline determination between frames, frame jumping for fast searching in the video, geometric robust information criterion (GRIC) scores for the frame-to-frame homography and fundamental matrix, and blurry-frame removal. Through experiments with videos taken in indoor space, the proposed method shows creating a more robust 3D point cloud than existing methods, even in the presence of motion blur and degenerate motions.

컬러 레이아웃을 이용한 키 프레임 추출 기법 (The Extracting Method of Key-frame Using Color Layout Descriptor)

  • 김소희;김형준;지수영;김회율
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(3)
    • /
    • pp.213-216
    • /
    • 2001
  • Key frame extraction is an important method of summarizing a long video. This paper propose a technique to automatically extract several key frames representative of its content from video. We use the color layout descriptor to select key frames from video. For selection of key frames, we calculate similarity of color layout features extracted from video, and extract key frames using similarity. An important aspect of our algorithm is that does not assume a fixed number of key frames per video; instead, it selects the number of appropriate key frames of summarizing a long video Experimental results show that our method using color layout descriptor can successfully select several key frames from a video, and we confirmed that the processing speed for extracting key frames from video is considerably fast.

  • PDF

잡음 모델 선택을 이용한 Wyner-Ziv 비디오 압축 (Wyner-Ziv Video Compression using Noise Model Selection)

  • 박천호;심혁재;전병우
    • 대한전자공학회논문지SP
    • /
    • 제46권4호
    • /
    • pp.58-66
    • /
    • 2009
  • 최근 경량화 비디오 부호화를 위함 분산 비디오 부호화 기술 (DVC: Distributed Video Coding)에 대한 연구가 활발히 이루어지고 있으며, Wyner-Ziv 부호화 기술은 이의 대표적인 기술로써 각광받고 있다. Wyner-Ziv (WZ) 부호화기는, 영상을, 기존의 인트라 부호화기를 이용하는 키 (Key) 프레임과 WZ 부호화를 하는 WZ 프레임으로 나누어 독립적으로 부호화 한다. WZ 복호화기로 전송된 키 프레임은 복원된 뒤 키 프레임 사이의 WZ 프레임을 추정하는데 사용되며 추정된 WZ 프레임을 보조정보 (Side Information)라고 한다. 보조정보는 WZ 프레임에 대한 정보가 없는 상태에서 추정되므로 필연적으로 WZ 프레임과 다르며 WZ 복호화기에서는 보조정보와 WZ 프레임과의 차이를 가상의 채널 잡음으로 간주한다. WZ 복호화 과정은 가상의 채널잡음을 WZ 복호화기 내에 존재하는 채널코드를 이용하여 제거함으로써 이루어지므로 채널 정보를 정확히 아는 것은 채널코드의 에러정정능력에 큰 영향을 미친다. WZ 복호화기에서는 추정된 WZ 영상만이 존재하므로 정확한 잡음의 양을 알 수 없으며, 일반적으로 선형 움직임에 근거한 키 프레임 간의 차를 하나의 예측 수단으로 사용한다. 또한 이와 같이 예측이 갖는 불확실성으로 채널코드의 효율이 저하되는 것을 막기 위하여 주변의 잡음과 비교를 통한 잘못된 잡음을 정정하는 방법도 제안되었다. 하지만 이런 방법들이 모든 프레임이나 비트 플레인에 존재하는 잡음을 제대로 측정한다고 할 수는 없다. 따라서 본 논문에서는 여러 개의 후보 잡음 모델을 생성한 후, 복호화 과정에서 가장 효율적인 모델을 선택하는 방법을 제안한다. 제안 방법에 대한 실험결과는 최대 0.8 dB의 PSNR이득을 보여준다.

Arch-to-beam rigidity analysis for V-shaped rigid frame composite arch bridges

  • Gou, Hongye;Pu, Qianhui;Zhou, Yang;Hong, Yu
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.405-416
    • /
    • 2015
  • We proposed the concept of nominal rigidity of a long-span V-shaped rigid frame composite arch bridge, analyzed the effects of structural parameters on nominal rigidity, and derived a theoretical nominal rigidity equation. In addition, we discussed the selection of the arch-to-beam rigidity ratio and its effect on the distribution of internal forces, and analyzed the influence of the ratio on the internal forces. We determined the delimitation value between rigid arch-flexible beam and flexible arch-rigid beam. We summarized the nominal rigidity and arch to beam rigidity ratios of existing bridges. The results show that (1) rigid arch-flexible beam and flexible arch-rigid beam can be defined by the arch-to-beam rigidity ratio; (2) nominal rigidities have no obvious differences among the continuous rigid frame composite arch bridge, V-shaped rigid frame bridge, and arch bridge, which shows that nominal rigidity can reflect the global stiffness of a structure.

자동 주석 갱신 및 멀티 분할 색상 히스토그램 기법을 이용한 의미기반 비디오 검색 시스템 (A Semantic-based Video Retrieval System using Method of Automatic Annotation Update and Multi-Partition Color Histogram)

  • 이광형;전문석
    • 한국통신학회논문지
    • /
    • 제29권8C호
    • /
    • pp.1133-1141
    • /
    • 2004
  • 비디오 데이터를 효율적으로 처리하기 위해서는 비디오 데이터가 가지고 있는 내용에 대한 정보를 데이터베이스에 저장하고 사용자들의 다양한 질의를 처리할 수 있는 의미기반 검색 기법이 요구된다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다. 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 제안하는 특징기반 검색기법을 통해 가장 유사한 키 프레임을 검색한다. 설계하고 구현한 시스템은 실험을 통한 성능평가에서 90% 이상의 높은 정확도를 보였다.

MPEG 압축 영상에서의 고속 특징 요소 추출을 이용한 장면 전환 검출과 키 프레임 선택 (Scene Change Detection and Key Frame Selection Using Fast Feature Extraction in the MPEG-Compressed Domain)

  • 송병철;김명준;나종범
    • 방송공학회논문지
    • /
    • 제4권2호
    • /
    • pp.155-163
    • /
    • 1999
  • 본 논문은 새로운 장면 전환 검출과 키 프레임 선태 기법을 제안하였다. 이를 위해 본 논문에서는 MPEG 압축 동영상에서 직접 DC 영상 및 에지(edge) 영상을 추출하여 이용하는데, 공간 영역으로 변환 후 에지 연상을 추출할 경우 계산량이 많다는 문제점이 있다. 따라서 본 논문에서는 그 계산량을 줄이기 위해 DCT 블록 당 5개의 저 대역 AC 계수들만을 이용하여 축소된 에지 영상을 고속으로 추출하는 방법을 제안하고, 이를 바탕으로 AC 예측(prediction)을 이용한 고속 에지 추출 기법도 추가적으로 제안하였다. 화질 측면에서 전자가 후자보다 약간 우수하지만, 두 방법 모두 영상의 중요한 에지 특징들을 잘 추출할 수 있다. 이와 같이 얻어진 에지 영상 및DC 영상을 이용하여 에지 에너지 다이어그램(dege energy diagram)과 히스토그램(histogram)을 구하여 급진적인 장면 전환 및 페이드(fade), 디졸브(dissolve) 같은 점진적인 장면 전환을 정확하게 검출함을 모의 실험을 통해 확인하였다. 또한 공간 영역에서 구한 에지 영상들에 비해 제안한 방법들에 의한 에지 영상들이 점진적인 장면 검출에 있어 훨씬 적은 계산량으로 비슷한 성능을 보임을 확인하였다. 마지막으로 HVS(human visual system)에 기반하여 각 장면에서 키 프레임을 선택하는 방법도 제안하였다. 위에서 얻어진 에지 및 DC 영상을 이용하기 때문에 optical flow를 이용하는 기존 방법에 비해 적은 계산량으로 의미 있는 키 프레임을 선택할 수 있었다.

  • PDF