• Title/Summary/Keyword: Key Technology Protection

Search Result 331, Processing Time 0.027 seconds

A Study on Efficient Key Management Model for Digital Pay-TV System (디지털 유료 방송시스템에 적합한 키 관리 모델에 관한 연구)

  • Yang Hyung-kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.200-207
    • /
    • 2006
  • Recently, with the development of information and communication technology, digital pay-TV technology is paid attention. So the Protection of the provided contents is becoming more important. However, in order to encourage an active based on digital TV, the contents and information sent and received respectively by the broadcaster and the subscriber must be protected. Therefore, in this paper, I analyze the requirements to protect the digital contents, the security and efficiency of the previous digital pay-TV system model. Then I proposed a key management model for digital pay-TV system.

Modeling time-dependent behavior of hard sandstone using the DEM method

  • Guo, Wen-Bin;Hu, Bo;Cheng, Jian-Long;Wang, Bei-Fang
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.517-525
    • /
    • 2020
  • The long-term stability of rock engineering is significantly affected by the time-dependent deformation behavior of rock, which is an important mechanical property of rock for engineering design. Although the hard rocks show small creep deformation, it cannot be ignored under high-stress condition during deep excavation. The inner mechanism of creep is complicated, therefore, it is necessary to investigate the relationship between microscopic creep mechanism and the macro creep behavior of rock. Microscopic numerical modeling of sandstone creep was performed in the investigation. A numerical sandstone sample was generated and Parallel Bond contact and Burger's contact model were assigned to the contacts between particles in DEM simulation. Sensitivity analysis of the microscopic creep parameters was conducted to explore how microscopic parameters affect the macroscopic creep deformation. The results show that the microscopic creep parameters have linear correlations with the corresponding macroscopic creep parameters, whereas the friction coefficient shows power function with peak strength and Young's modulus, respectively. Moreover, the microscopic parameters were calibrated. The creep modeling curve is in good agreement with the verification test result. Finally, the creep curves under one-step loading and multi-step loading were compared. This investigation can act as a helpful reference for modeling rock creep behavior from a microscopic mechanism perspective.

User Authentication Technology using Multiple SSO in the Cloud Computing Environment

  • Cho, Min-Hee;Jang, Eun-Gyeom;Choi, Yong-Rak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.31-38
    • /
    • 2016
  • The interface between servers and clients and system management in the cloud computing environment is different from the existing computing environment. The technology for information protection. Management and user authentication has become an important issue. For providing a more convenient service to users, SSO technology is applied to this cloud computing service. In the SSO service environment, system access using a single key facilitates access to several servers at the same time. This SSO authentication service technology is vulnerable to security of several systems, once the key is exposed. In this paper, we propose a technology to solve problems, which might be caused by single key authentication in SSO-based cloud computing access. This is a distributed agent authentication technology using a multiple SSO agent to reinforce user authentication using a single key in the SSO service environment. For user authentication reinforcement, phased access is applied and trackable log information is used when there is a security problem in system to provide a safe cloud computing service.

Conceptual design study on Plutonium-238 production in a multi-purpose high flux reactor

  • Jian Li;Jing Zhao;Zhihong Liu;Ding She;Heng Xie;Lei Shi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.147-159
    • /
    • 2024
  • Plutonium-238 has always been considered as the one of the promising radioisotopes for space nuclear power supply, which has long half-life, low radiation protection level, high power density, and stable fuel form at high temperatures. The industrial-scale production of 238Pu mainly depends on irradiating solid 237NpO2 target in high flux reactors, however the production process faces problems such as large fission loss and high requirements for product quality control. In this paper, a conceptual design study of producing 238Pu in a multi-purpose high flux reactor was evaluated and analyzed, which includes a sensitivity analysis on 238Pu production and a further study on the irradiation scheme. It demonstrated that the target structure and its location in the reactor, as well as the operation scheme has an impact on 238Pu amount and product quality. Furthermore, the production efficiency could be improved by optimizing target material concentration, target locations in the core and reflector. This work provides technical support for irradiation production of 238Pu in high flux reactors.

Invariant Biometric Key Extraction based on Iris Code (홍채 코드 기반 생체 고유키 추출에 관한 연구)

  • Lee, Youn-Joo;Lee, Hyung-Gu;Park, Kang-Ryoung;Kim, Jai-Hie
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1011-1014
    • /
    • 2005
  • In this paper, we propose a method that extracts an invariant biometric key in order to apply this biometric key to the crypto-biometric system. This system is a new authentication architecture which can improve the security of current cryptographic system and solve the problem of stored template protection in conventional biometric system, also. To use biometric information as a cryptographic key in crypto-biometric system, same key should be generated from the same person. However, it is difficult to obtain such an invariant biometric key because biometric data is sensitive to surrounding environments. The proposed method solves this problem by clustering Iris Codes obtained by using independent component analysis (ICA).

  • PDF

An Improved Shared-Path Protection Algorithm for Double-Link Failures in Meshed WDM Optical Networks

  • Wang, Xingwei;Guo, Lei;Li, Lemin;Wei, Xuetao
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.331-337
    • /
    • 2008
  • In this paper, we investigate survivability in wavelength division multiplexing (WDM) mesh networks and propose a new algorithm called improved shared-path protection (ISPP) to completely tolerate the double-link failures. Compared with previous algorithms for protecting double-link failures, i.e., shared-path protection (SPP) and shared-link protection (SLP), the advantage of ISPP is to allow primary paths and backup paths to share the mixed wavelength-links based on the proposed new rules in which some primary wavelength-links can be changed to mixed wavelength-links, which can be shared by primary paths and backup paths. In addition, some mixed wavelength-links also can be shared by different backup paths for saving resources. Simulation results show that ISPP algorithm performs better in resource utilization ratio and blocking probability than conventional SPP and SLP algorithms.

Suppression of Glow Corona on Streamer and Influence of Thin Wire on its Inception

  • Sima, Wenxia;Fan, Shuochao;Yang, Qing;Wang, Qi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1759-1764
    • /
    • 2015
  • Glow corona is a kind of streamer-free corona that can suppress upward leaders in transmission lines. Thus, it has good application potential in lightning protection. This paper investigates its corona characteristics. The suppression characteristic of glow corona on streamer is studied in air gap under negative DC voltage by wrapping thin wires on the electrode. The effect of thin wire winding patterns on the gap breakdown voltage is analyzed. Results are considered to be attributed to the inception condition of glow corona. Thus an inception test of glow corona is also conducted, and the inception voltage is obtained. Results show that the inception voltage decreases with short winding pitch. Thus an investigation on the inception of glow corona influenced by thin wire is conducted, and an influential factor is proposed to evaluate the influence. The inception regular of thin wire glow corona presented in this paper has certain reference value for the application of glow corona in transmission lines.

Intelligent Approach for Android Malware Detection

  • Abdulla, Shubair;Altaher, Altyeb
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2964-2983
    • /
    • 2015
  • As the Android operating system has become a key target for malware authors, Android protection has become a thriving research area. Beside the proved importance of system permissions for malware analysis, there is a lot of overlapping in permissions between malware apps and goodware apps. The exploitation of them effectively in malware detection is still an open issue. In this paper, to investigate the feasibility of neuro-fuzzy techniques to Android protection based on system permissions, we introduce a self-adaptive neuro-fuzzy inference system to classify the Android apps into malware and goodware. According to the framework introduced, the most significant permissions that characterize optimally malware apps are identified using Information Gain Ratio method and encapsulated into patterns of features. The patterns of features data is used to train and test the system using stratified cross-validation methodologies. The experiments conducted conclude that the proposed classifier can be effective in Android protection. The results also underline that the neuro-fuzzy techniques are feasible to employ in the field.

Volatiles from the Maillard Reaction of L-Ascorbic Acid and L-Alanine at Different pHs

  • Yu, Ai-Nong;Deng, Qi-Hui
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1495-1499
    • /
    • 2009
  • The volatiles formed from the reactions of L-ascorbic acid with L-alanine at 5 different pH (5, 6, 7, 8, or 9) and $140{\pm}2^{\circ}C$ for 2 hr was performed using solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis were identified to be 25 different kinds. The reaction between L-ascorbic acid and L-alanine led mainly to the formation of pyrazines. Many of these were alkylpyrazines, such as 3-ethyl-2,5-dimethylpyrazine, 2,5-dimethylpyrazine, 2-ethyl-5-methylpyrazine, 3,5-diethyl-2-methylpyrazine, methylpyrazine, 2-ethyl-6-methylpyrazine, and 2,3-diethyl-5-methylpyrazine, other compounds identified were furans, phenols, benzoquinones, 2,4,6-trimethylpyridine, and 2-methylbenzoxazole. The studies showed that furans, such as furfural and benzofuran were formed mainly at acidic pH. In contrast, higher pH values could promote the production of pyrazines.

A Study on the Cryptography Technology for Computing Stored and Encrypted Information without Key Leakage (키 유출 없이 저장되고 암호화된 정보를 계산할 수 있는 암호기술에 관한 연구)

  • Mun, Hyung-Jin;Hwang, Yoon-Cheol
    • Journal of Industrial Convergence
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Various cryptographic technologies have been proposed from ancient times and are developing in various ways to ensure the confidentiality of information. Due to exponentially increasing computer power, the encryption key is gradually increasing for security. Technology are being developed; however, security is guaranteed only in a short period of time. With the advent of the 4th Industrial Revolution, encryption technology is required in various fields. Recently, encryption technology using homomorphic encryption has attracted attention. Security threats arise due to the exposure of keys and plain texts used in the decryption processing for the operation of encrypted information. The homomorphic encryption can compute the data of the cipher text and secure process the information without exposing the plain text. When using the homomorphic encryption in processing big data like stored personal information in various services, security threats can be avoided because there is no exposure to key usage and decrypted information.