• Title/Summary/Keyword: Key Parameter

Search Result 904, Processing Time 0.026 seconds

Key Parameters Analysis of Important Radionuclides in Dose Evaluation Model of Decommissioning Site (해체 부지 선량평가모텔의 주요 핵종에 대한 Key parameter 분석)

  • 임용규;김학수;손중권;박경록;강기두;김경덕;정찬우
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.52-57
    • /
    • 2004
  • In order to analyze key parameters of important radionuclides in dose evaluation model of decommissioning site, a sensitivity analysis was performed. This analysis assumed a resident farmer for an exposure scenario and 0.037Bq/g for the concentration of radionuclides. As a result of sensitivity analysis, the key parameters of radionuclides considered were the area of contaminated zone, external gamma shielding factor and indoor time fraction for Cs-137 and Co-60. The key parameters for C-14 were the environmental parameters and hydrological parameters of unsaturated zone. Also, the key parameter for Sr-90 was the density of contaminated zone.

  • PDF

Design and Implementation of Security Technique in Electronic Signature System (전자결재 시스템에서 보안기법 설계 및 구현)

  • 유영모;강성수;김완규;송진국
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.491-498
    • /
    • 2001
  • IN this Paper we propose an encryption algorithm for security in data communication. this algorithm acts encryption operation after the compression of data in order to reduce the transmission time and storage an encryption key is generated by using a parameter. as soon as key value is generated the parameter is transmitted and key is recreated every 26 times of parameter changing. the random number which is a constituent unit of encryption key is stored in a table the table is reorganized when the key is generated 40 times in order to intensity the security of encryption key. the encryption of data is made through the operation process of the generated key and sour data and the decryption performs the revers operation of encryption after getting decryption key by searching the transmitted parameter. as this algorithm is performed lastly it is possible to be used in practice.

  • PDF

Parameter Identification of 3R-C Equivalent Circuit Model Based on Full Life Cycle Database

  • Che, Yanbo;Jia, Jingjing;Yang, Yuexin;Wang, Shaohui;He, Wei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1759-1768
    • /
    • 2018
  • The energy density, power density and ohm resistance of battery change significantly as results of battery aging, which lead to decrease in the accuracy of the equivalent model. A parameter identification method of the equivale6nt circuit model with 3 R-C branches based on the test database of battery life cycle is proposed in this paper. This database is built on the basis of experiments such as updating of available capacity, charging and discharging tests at different rates and relaxation characteristics tests. It can realize regular update and calibration of key parameters like SOH, so as to ensure the reliability of parameters identified. Taking SOH, SOC and T as independent variables, lookup table method is adopted to set initial value for the parameter matrix. Meanwhile, in order to ensure the validity of the model, the least square method based on variable forgetting factor is adopted for optimizing to complete the identification of equivalent model parameters. By comparing the simulation data with measured data for charging and discharging experiments of Li-ion battery, the effectiveness of the full life cycle database and the model are verified.

Sensitivity Analysis and Parameter Estimation of Activated Sludge Model Using Weighted Effluent Quality Index (가중유출수질지표를 이용한 활성오니공정모델의 민감도 분석과 매개변수 보정)

  • Lee, Won-Young;Kim, Min-Han;Kim, Young-Whang;Lee, In-Beum;Yoo, Chang-Kyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1174-1179
    • /
    • 2008
  • Many modeling and calibration methods have been developed to analyze and design the biological wastewater treatment process. For the systematic use of activated sludge model (ASM) in a real treatment process, a most important step in this usage is a calibration which can find a key parameter set of ASM, which depends on the microorganism communities and the process conditions of the plants. In this paper, a standardized calibration protocol of the ASM model is developed. First, a weighted effluent quality index(WEQI) is suggested far a calibration protocol. Second, the most sensitive parameter set is determined by a sensitive analysis based on WEQI and then a parameter optimization method are used for a systematic calibration of key parameters. The proposed method is applied to a calibration problems of the single carbon removal process. The results of the sensitivity analysis and parameter estimation based on a WEQI shows a quite reasonable parameter set and precisely estimated parameters, which can improve the quality and the efficiency of the modeling and the prediction of ASM model. Moreover, it can be used for a calibration scheme of other biological processes, such as sequence batch reactor, anaerobic digestion process with a dedicated methodology.

Low Parameter Sensitivity Deadbeat Direct Torque Control for Surface Mounted Permanent Magnet Synchronous Motors

  • Zhang, Xiao-Guang;Wang, Ke-Qin;Hou, Ben-Shuai
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1211-1222
    • /
    • 2017
  • In order to decrease the parameter sensitivity of deadbeat direct torque control (DB-DTC), an improved deadbeat direct torque control method for surface mounted permanent-magnet synchronous motor (SPMSM) drives is proposed. First, the track errors of the stator flux and torque that are caused by model parameter mismatch are analyzed. Then a sliding mode observer is designed, which is able to predict the d-q axis currents of the next control period for one-step delay compensation, and to simultaneously estimate the model parameter disturbance. The estimated disturbance of this observer is used to estimate the stator resistance offline. Then the estimated resistance is required to update the designed sliding-mode observer, which can be used to estimate the inductance and permanent-magnetic flux linkage online. In addition, the flux and torque estimation of the next control period, which is unaffected by the model parameter disturbance, is achieved by using predictive d-q axis currents and estimated parameters. Hence, a low parameter sensitivity DB-DTC method is developed. Simulation and experimental results show the validity of the proposed direct control method.

Parameter Optimization of the LC filters Based on Multiple Impact Factors for Cascaded H-bridge Dynamic Voltage Restorers

  • Chen, Guodong;Zhu, Miao;Cai, Xu
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.165-174
    • /
    • 2014
  • The cascaded H-Bridge Dynamic Voltage Restorer (DVR) is used for protecting high voltage and large capacity loads from voltage sags. The LC filter in the DVR is needed to eliminate switching ripples, which also provides an accurate tracking feature in a certain frequency range. Therefore, the parameter optimization of the LC filter is especially important. In this paper, the value range functions for the inductance and capacitance in LC filters are discussed. Then, parameter variations under different conditions of voltage sags and power factors are analyzed. In addition, an optimized design method is also proposed with the consideration of multiple impact factors. A detailed optimization procedure is presented, and its validity is demonstrated by simulation and experimental results. Both results show that the proposed method can improve the LC filter design for a cascaded H-Bridge DVR and enhance the performance of the whole system.

GPS phase measurement cycle-slip detection based on a new wavelet function

  • Zuoya, Zheng;Xiushan, Lu;Xinzhou, Wang;Chuanfa, Chen
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.91-96
    • /
    • 2006
  • Presently, cycle-slip detection is done between adjacent two points in many cycle-slip methods. Inherently, it is simple wavelet analysis. A new idea is put forward that the number of difference point can adjust by a parameter factor; we study this method to smooth raw data and detect cycle-slip with wavelet analysis. Taking CHAMP satellite data for example, we get some significant conclusions. It is showed that it is valid to detect cycle-slip in GPS phase measurement based on this wavelet function, and it is helpful to improve the precision of GPS data pre-processing and positioning.

  • PDF

A plastic strain based statistical damage model for brittle to ductile behaviour of rocks

  • Zhou, Changtai;Zhang, Kai;Wang, Haibo;Xu, Yongxiang
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.349-356
    • /
    • 2020
  • Rock brittleness, which is closely related to the failure modes, plays a significant role in the design and construction of many rock engineering applications. However, the brittle-ductile failure transition is mostly ignored by the current statistical damage constitutive model, which may misestimate the failure strength and failure behaviours of intact rock. In this study, a new statistical damage model considering rock brittleness is proposed for brittle to ductile behaviour of rocks using brittleness index (BI). Firstly, the statistical constitutive damage model is reviewed and a new statistical damage model considering failure mode transition is developed by introducing rock brittleness parameter-BI. Then the corresponding damage distribution parameters, shape parameter m and scale parameter F0, are expressed in terms of BI. The shape parameter m has a positive relationship with BI while the scale parameter F0 depends on both BI and εe. Finally, the robustness and correctness of the proposed damage model is validated using a set of experimental data with various confining pressure.

Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method

  • Gao, Yang;Xiao, Wan-Shen;Zhu, Haiping
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.205-219
    • /
    • 2019
  • This paper analyzes nonlinear free vibration of the circular nano-tubes made of functionally graded materials in the framework of nonlocal strain gradient theory in conjunction with a refined higher order shear deformation beam model. The effective material properties of the tube related to the change of temperature are assumed to vary along the radius of tube based on the power law. The refined beam model is introduced which not only contains transverse shear deformation but also satisfies the stress boundary conditions where shear stress cancels each other out on the inner and outer surfaces. Moreover, it can degenerate the Euler beam model, the Timoshenko beam model and the Reddy beam model. By incorporating this model with Hamilton's principle, the nonlinear vibration equations are established. The equations, including a material length scale parameter as well as a nonlocal parameter, can describe the size-dependent in linear and nonlinear vibration of FGM nanotubes. Analytical solution is obtained by using a two-steps perturbation method. Several comparisons are performed to validate the present analysis. Eventually, the effects of various physical parameters on nonlinear and linear natural frequencies of FGM nanotubes are analyzed, such as inner radius, temperature, nonlocal parameter, strain gradient parameter, scale parameter ratio, slenderness ratio, volume indexes, different beam models.

On methods for extending a single footfall trace into a continuous force curve for floor vibration serviceability analysis

  • Chen, Jun;Peng, Yixin;Ye, Ting
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.179-196
    • /
    • 2013
  • An experimentally measured single footfall trace (SFT) from a walking subject needs to be extended into a continuous force curve, which can then be used as load for floor vibration serviceability assessment, or on which further analysis like discrete Fourier transform can be conducted. This paper investigates the accuracy, applicability and parametrical sensitivity of four extension methods, Methods I to IV, which extends the SFT into a continuous time history by the walking step rate, stride time, double support proportion and the double support time, respectively. Performance of the four methods was assessed by comparing their results with the experimentally obtained reference footfall traces in the time and frequency domain, and by comparing the vibrational response of a concrete slab subjected to the extended traces to that of reference traces. The effect of the extension parameter on each method was also explored through parametrical analysis. This study finds that, in general, Method I and II perform better than Method III and IV, and all of the four methods are sensitive to their extension parameter. When reliable information of walking rate or gait period is available in the test, Methods I or II is a better choice. Otherwise, Method III, with the suggested extension parameter of double support time proportion, is recommended.