• Title/Summary/Keyword: Key Aggregation

Search Result 90, Processing Time 0.024 seconds

Interaction of Indigo Carmine with Cetyltrimethylammonium Bromide and Application to Determination of Cationic Surfactant in Wastewater

  • Wang, Hong-Yan;Gao, Hong-Wen;Zhao, Jian-Fu
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1444-1448
    • /
    • 2003
  • The microsurface adsorption - spectral correction (MSASC) technique has been applied to the interaction of indigo carmine (IC) with cetyltrimethylammonium bromide (CTAB). The aggregation of IC on CTAB obeys Langmuir isothermal adsorption. The results show that both the monomer complex $IC{\cdot}CTAB$ and the micellar complex $(IC{\cdot}CTAB)_{78}$ were formed. The binding constant of the monomer complex was calculated to be $K_{IC{\cdot}CTAB}$ = 2.20 ${\times}10^5L{\cdot}mol^{-1}$, and the molar absorptivity of the micellar complex was calculated to be ${\varepsilon}_{(IC{\cdot}CTAB)78}\;^{560nm}$ = 8.58 ${\times}10^5L{\cdot}mol^{-1}{\cdot}cm^{-1}$. The aggregation was applied to the determination of cationic surfactant in wastewater.

A Post-Quantum Multi-Signature Scheme (양자 컴퓨팅 환경에서 안전한 다중 서명 기법)

  • Ko, Chanyoung;Lee, Youngkyung;Lee, Kwangsu;Park, Jong Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.517-526
    • /
    • 2021
  • Recently, the acceleration of the development of quantum computers has raised the issue of the safety of factorization and discrete logarithm based digital signature schemes used in existing Internet environments. To solve the issue, several digital signature schemes are presented that are safe in post-quantum computing environments, including standardization work by the National Institute of Standards and Technology(NIST). In this paper, we design and present a multi-signature scheme based on the TACHYON announced by Behnia et al. in 2018 CCS conference, and prove the security. Multi-signature schemes are key techniques that can distribute the dependence of cryptocurrency-wallet on private keys in the cryptocurrency field, which has recently received much attention as an digital signature application, and many researchers and developers have recently been interested. The multi-signature scheme presented in this paper enables public key aggregation in a plain public key model, which does not require additional zero-knowledge proof, and can construct an effective scheme with only an aggregated public key.

A Privacy-preserving Data Aggregation Scheme with Efficient Batch Verification in Smart Grid

  • Zhang, Yueyu;Chen, Jie;Zhou, Hua;Dang, Lanjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.617-636
    • /
    • 2021
  • This paper presents a privacy-preserving data aggregation scheme deals with the multidimensional data. It is essential that the multidimensional data is rarely mentioned in all researches on smart grid. We use the Paillier Cryptosystem and blinding factor technique to encrypt the multidimensional data as a whole and take advantage of the homomorphic property of the Paillier Cryptosystem to achieve data aggregation. Signature and efficient batch verification have also been applied into our scheme for data integrity and quick verification. And the efficient batch verification only requires 2 pairing operations. Our scheme also supports fault tolerance which means that even some smart meters don't work, our scheme can still work well. In addition, we give two extensions of our scheme. One is that our scheme can be used to compute a fixed user's time-of-use electricity bill. The other is that our scheme is able to effectively and quickly deal with the dynamic user situation. In security analysis, we prove the detailed unforgeability and security of batch verification, and briefly introduce other security features. Performance analysis shows that our scheme has lower computational complexity and communication overhead than existing schemes.

Patient-specific pluripotent stem cell-based Parkinson's disease models showing endogenous alpha-synuclein aggregation

  • Oh, Yohan
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.349-359
    • /
    • 2019
  • After the first research declaring the generation of human induced pluripotent stem cells (hiPSCs) in 2007, several attempts have been made to model neurodegenerative disease in vitro during the past decade. Parkinson's disease (PD) is the second most common neurodegenerative disorder, which is mainly characterized by motor dysfunction. The formation of unique and filamentous inclusion bodies called Lewy bodies (LBs) is the hallmark of both PD and dementia with LBs. The key pathology in PD is generally considered to be the alpha-synuclein (${\alpha}$-syn) accumulation, although it is still controversial whether this protein aggregation is a cause or consequence of neurodegeneration. In the present work, the recently published researches which recapitulated the ${\alpha}$-syn aggregation phenomena in sporadic and familial PD hiPSC models were reviewed. Furthermore, the advantages and potentials of using patient-derived PD hiPSC with focus on ${\alpha}$-syn aggregation have been discussed.

A Design of Protocol Management System for Aggregating Messages based on Certification between Vehicles (차량간 인증 기반 메시지 집계 프로토콜 관리시스템 설계)

  • Lee, ByungKwan;Jeong, EunHee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-51
    • /
    • 2013
  • This paper proposes the design of protocol management system for aggregationg messages based on certification between vehicles which not only prevents the messages between vehicles from being forged and altered by Sybil attack by authenticating the them, and but also provides the efficient communication by aggregating the redundant vehicle messages which frequently happens when communicating. For this, the proposed system proposes the SKLC(Session Key Local Certificate) design which is a local certificate based on a session key, and the MAP(Message Aggregation Protocol) design which aggregates the redundant vehicle messages. Therefore, when the proposed system checks the certificate of vehicle, it provides the reliable information securely by verifying the integrity of vehicle with a hash function operation, and improves communication efficiency by reducing the processing time.

Inhibition of Citrate Synthase Thermal Aggregation In Vitro by Recombinant Small Heat Shock Proteins

  • Gong, Weina;Yue, Ming;Xie, Bingyan;Wan, Fanghao;Guo, Jianying
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1628-1634
    • /
    • 2009
  • Small heat shock proteins (sHSPs) function as molecular chaperones that protect cells against environmental stresses. In the present study, the genes of hsp17.6 and hsp17.7, cytosolic class I sHSPs, were cloned from a tropical plant, Ageratina adenophorum. Their C-terminal domains were highly conserved with those of sHSPs from other plants, indicating the importance of the C-terminal domains for the structure and activity of sHSPs. The recombinant HSP17.6 and HSP17.7 were applied to determine their chaperone function. In vitro, HSP17.6 and HSP17.7 actively participated in the refolding of the model substrate citrate synthase (CS) and effectively prevented the thermal aggregation of CS at $45^{\circ}C$ and the irreversible inactivation of CS at $38^{\circ}C$ at stoichiometric levels. The prior presence of HSP17.7 was assumed to suppress the thermal aggregation of the model substrate CS. Therefore, this report confirms the chaperone activity of HSP17.6 and HSP17.7 and their potential as a protectant for active proteins.

RPIDA: Recoverable Privacy-preserving Integrity-assured Data Aggregation Scheme for Wireless Sensor Networks

  • Yang, Lijun;Ding, Chao;Wu, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.5189-5208
    • /
    • 2015
  • To address the contradiction between data aggregation and data security in wireless sensor networks, a Recoverable Privacy-preserving Integrity-assured Data Aggregation (RPIDA) scheme is proposed based on privacy homomorphism and aggregate message authentication code. The proposed scheme provides both end-to-end privacy and data integrity for data aggregation in WSNs. In our scheme, the base station can recover each sensing data collected by all sensors even if these data have been aggregated by aggregators, thus can verify the integrity of all sensing data. Besides, with these individual sensing data, base station is able to perform any further operations on them, which means RPIDA is not limited in types of aggregation functions. The security analysis indicates that our proposal is resilient against typical security attacks; besides, it can detect and locate the malicious nodes in a certain range. The performance analysis shows that the proposed scheme has remarkable advantage over other asymmetric schemes in terms of computation and communication overhead. In order to evaluate the performance and the feasibility of our proposal, the prototype implementation is presented based on the TinyOS platform. The experiment results demonstrate that RPIDA is feasible and efficient for resource-constrained sensor nodes.

Dual-stream Co-enhanced Network for Unsupervised Video Object Segmentation

  • Hongliang Zhu;Hui Yin;Yanting Liu;Ning Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.938-958
    • /
    • 2024
  • Unsupervised Video Object Segmentation (UVOS) is a highly challenging problem in computer vision as the annotation of the target object in the testing video is unknown at all. The main difficulty is to effectively handle the complicated and changeable motion state of the target object and the confusion of similar background objects in video sequence. In this paper, we propose a novel deep Dual-stream Co-enhanced Network (DC-Net) for UVOS via bidirectional motion cues refinement and multi-level feature aggregation, which can fully take advantage of motion cues and effectively integrate different level features to produce high-quality segmentation mask. DC-Net is a dual-stream architecture where the two streams are co-enhanced by each other. One is a motion stream with a Motion-cues Refine Module (MRM), which learns from bidirectional optical flow images and produces fine-grained and complete distinctive motion saliency map, and the other is an appearance stream with a Multi-level Feature Aggregation Module (MFAM) and a Context Attention Module (CAM) which are designed to integrate the different level features effectively. Specifically, the motion saliency map obtained by the motion stream is fused with each stage of the decoder in the appearance stream to improve the segmentation, and in turn the segmentation loss in the appearance stream feeds back into the motion stream to enhance the motion refinement. Experimental results on three datasets (Davis2016, VideoSD, SegTrack-v2) demonstrate that DC-Net has achieved comparable results with some state-of-the-art methods.

A Privacy-Preserving Health Data Aggregation Scheme

  • Liu, Yining;Liu, Gao;Cheng, Chi;Xia, Zhe;Shen, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3852-3864
    • /
    • 2016
  • Patients' health data is very sensitive and the access to individual's health data should be strictly restricted. However, many data consumers may need to use the aggregated health data. For example, the insurance companies needs to use this data to setup the premium level for health insurances. Therefore, privacy-preserving data aggregation solutions for health data have both theoretical importance and application potentials. In this paper, we propose a privacy-preserving health data aggregation scheme using differential privacy. In our scheme, patients' health data are aggregated by the local healthcare center before it is used by data comsumers, and this prevents individual's data from being leaked. Moreover, compared with the existing schemes in the literature, our work enjoys two additional benefits: 1) it not only resists many well known attacks in the open wireless networks, but also achieves the resilience against the human-factor-aware differential aggregation attack; 2) no trusted third party is employed in our proposed scheme, hence it achieves the robustness property and it does not suffer the single point failure problem.

Degradation or aggregation: the ramifications of post-translational modifications on tau

  • Park, Seoyoung;Lee, Jung Hoon;Jeon, Jun Hyoung;Lee, Min Jae
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.265-273
    • /
    • 2018
  • Tau protein is encoded in the microtubule-associated protein tau (MAPT) gene and contributes to the stability of microtubules in axons. Despite of its basic isoelectric point and high solubility, tau is often found in intraneuronal filamentous inclusions such as paired helical filaments (PHFs), which are the primary constituent of neurofibrillary tangles (NFTs). This pathological feature is the nosological entity termed "tauopathies" which notably include Alzheimer's disease (AD). A proteinaceous signature of all tauopathies is hyperphosphorylation of the accumulated tau, which has been extensively studied as a major pharmacological target for AD therapy. However, in addition to phosphorylation events, tau undergoes a number of diverse posttranslational modifications (PTMs) which appear to be controlled by complex crosstalk. It remains to be elucidated which of the PTMs or their combinations have pro-aggregation or anti-aggregation properties. In this review, we outline the consequences of and communications between several key PTMs of tau, such as acetylation, phosphorylation, and ubiquitination, focusing on their roles in aggregation and degradation. We place emphasis on the structure of tau protofilaments from the human AD brain, which may be good targets to modulate etiological PTMs which cause tau aggregation.