• Title/Summary/Keyword: Keumkang wheat

Search Result 34, Processing Time 0.02 seconds

Genetic Analysis of Wheat for Plant Height by RNA-seq Analysis of Wheat Cultivars 'Keumkang' and 'Komac 5'

  • Moon Seok Kim;Jin Seok Yoon;Yong Weon Seo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.275-275
    • /
    • 2022
  • One of the most widely grown food crops in the world, wheat, is increasing more lodged since for increased rains and winds caused by abnormal climate. During the Green Revolution, shorter wheat cultivars were bred using many Rht genes to increase lodging resistance. However, since only some Rht genes were used for breeding shorter wheat, it may have had a limited impact on wheat breeding and reduced genetic diversity. Therefore, it is essential to search for genes that have breeding potential and affect dwarfism in order to increase the genetic diversity of dwarf characteristics in wheat. In this study, we performed the RNA-seq between 'Keumkang' and 'Komac 5' ('Keumkang' mutant) to analyze the difference in plant height. Differentially expressed genes (DEGs) analysis and Gene function annotation were performed using 265,365,558 mapped reads. Cluster set analysis was performed to compress and select candidate gene DEGs affecting plant height, stem and internode. Gene expression analysis was performed in order to identify the functions of the selected genes by condensing the results of the DEG analysis into a cluster set analysis. This analysis of these plant height-related genes could help reduce plant height, improve lodging resistance, and increase wheat yield. Its application to wheat breeding will also affect the increased genetic diversity of wheat dwarfism.

  • PDF

Phenotypic and Genetic Effects of Dwarfing Genes on Plant Height and Some Agronomic Traits in Wheat

  • Moon Seok Kim;Jin Seok Yoon;Yong Weon Seo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.276-276
    • /
    • 2022
  • Wheat is one of the most widely grown food crops worldwide. Extreme precipitation and wind disturbances increased due to the abnormal climate, which resulted in increased lodging. Introduction of dwarf genes in wheat significantly increased lodging resistance and productivity in wheat breeding. In this study, we performed the genotyping of dwarfing genes between 'Keumkang' and 'Komac 5' ('Keumkang' mutant). In addition, we investigated the relationship between plant height and several phenotypic characters using F2 segregation populations derived from crosses between the two varieties. There was no significant difference in phenotypic characters between the two varieties except for plant height. In the genotyping analysis using dwarfing genes, mutations of two dwarfing gene were found to be induced between the two varieties. The four genotypes of the F2 populations from a crossing between 'Keumkang' and 'Komac 5' were used to compare and evaluate the effects of two dwarfing genes. Plants with two single mutant dwarfing gene and double mutant dwarfing gene revealed reduced plant heights than control plants by 4.5%, 6.9%, and 33.2%, respectively. The phenotype analysis showed that double mutant dwarfing gene affected wheat stem growth as the length decreases from the second node, resulting in decreased plant height. However, there were no significant differences in the agronomic traits between mutant plants and control plant. These results may provide novel information about the effect of double mutant dwarfing gene on plant height, and may help improve lodging tolerance and wheat yield.

  • PDF

A New White Wheat Variety, "Hanbaek" with Good Noodle Quality, High Yield and Resistant to Winter Hardiness (내한 다수성 백립계 제면용 밀 신품종 "한백밀")

  • Park, Chlul-Soo;Heo, Hwa-Young;Kang, Moon-Suk;Kim, Hong-Sik;Park, Hyung-Ho;Park, Jong-Chul;Kang, Chon-Sik;Kim, Hag-Sin;Cheong, Young-Keun;Park, Ki-Hun
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.130-136
    • /
    • 2009
  • "Hanbaek", a white winter wheat (Triticum aestivum L.) cultivar was developed by the National Institute of Crop Science, RDA. It was derived from the cross "Shan7859/Keumkang"//"Guamuehill" during 1996. "Hanbaek" was evaluated as "Iksan314" in Advanced Yield Trial Test in 2005. It was tested in the regional yield trial between 2006 and 2008. "Hanbaek" is an awned, semi-dwarf and hard winter wheat, similar to "Keumkang" (check cultivar). The heading and maturing date of "Hanbaek" were similar to that of "Keumkang". Culm and spike length of "Hanbaek" were 89 cm and 9.0 cm, which longer culm length and spike length than "Keumkang" (80 cm and 7.9 cm, respectively). "Hanbaek" had lower test weight (797 g) and higher 1,000-grain weight (47.7 g) than "Keumkang" (813 g and 44.9 g, respectively). "Hanbaek" showed resistance to winter hardiness and susceptible to pre-harvest sprouting, which lower withering rate on the high ridge (4.4%) and higher rate of pre-harvest sprouting (47.9%) than "Keumkang" (21.9% and 30.4%, respectively). "Hanbaek" had similar flour yield (74.4%) to "Keumkang" (74.1%) and higher ash content (0.45%) than "Keumkang" (0.42%). "Hanbaek" showed lower lightness (89.13) and similar redness and yellowness (-0.87 and 10.93) in flour color than "Keumkang" (90.02, -1.23 and 9.28, respectively). It showed similar protein content (12.8%) SDS-sedimentation volume (63.0 ml) and gluten content (10.8%) to those of "Keumkang" (11.9%, 62.3 ml and 10.2%, respectively). It showed lower water absorption (59.6%) and mixing time (3.8 min) in mixograph and higher fermentation volume (1,350 ml) than those of "Keumkang" (60.6%, 4.7 min and 1,290 ml, respectively). Amylose content and pasting properties of "Hanbaek " were similar to those of "Keumkang". "Hanbaek" showed same compositions in high molecular weight glutenin subunits (HMW-GS, 2*, 13+16, 2+12), granule bound starch synthase (Wx-A1a, Wx-B1a, and Wx-D1a) and puroindolines (Pina-D1a/Pinb-D1b) compared to "Keumkang". "Hanbaek" showed lower hardness (4.22N) and similar springiness and cohesiveness of cooked noodles (0.94 and 0.63) to those of "Keumkang" (4.65N, 0.93 and 0.64, respectively). Average yield of "Hanbaek" in the regional adaptation yield trial was 5.98 MT/ha in upland and 5.05 MT/ha in paddy field, which was 8% and 6% higher than those of "Keumkang" (5.55 MT/ha and 4.77 MT/ha, respectively). "Hanbaek" would be suitable for the area above the daily minimum temperature of $-10^{\circ}C$ in January in Korean peninsula.

A New White Wheat Variety, "Jeokjoong" with High Yield, Good Noodle Quality and Moderate to Scab (백립계 다수성 붉은곰팡이병 중도저항성 제면용 밀 신품종 "적중밀")

  • Park, Chlul Soo;Heo, Hwa-Young;Kang, Moon-Suk;Lee, Chun-Kee;Park, Kwang-Geun;Park, Jong-Chul;Kim, Hong-Sik;Kim, Hag-Sin;Hwang, Jong-Jin;Cheong, Young-Keun;Kim, Jung-Gon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.308-313
    • /
    • 2008
  • "Jeokjoong", a white winter wheat (Triticum aestivum L.) variety was developed from the cross "Keumkang"/"Tapdong". "Jeokjoong" is an awned, semi-dwarf and soft white winter wheat, similar to "Keumkang" (check variety). The heading and maturing date of "Jeokjoong" were similar to "Keumkang". Culm and spike length of "Jeokjoong" were 78 cm and 7.5 cm, similar to "Keumkang". "Jeokjoong" had lower test weight (800 g) and lower 1,000-grain weight (40.1 g) than "Keumkang" (811 g and 44.0 g, respectively). It had resistance to winter hardiness, wet-soil tolerance and lodging tolerance. "Jeokjoong" showed moderate to scab in test of specific character although "Keumkang" is susceptible to scab. "Jeokjoong" had lower flour yield (69.2%) and ash content (0.36%) than "Keumkang" (72.0% and 0.41%, respectively) and similar flour color to "Keumkang". It showed lower protein content (8.9%) and SDS-sedimentation volume (36.8 ml) and shorter mixograph mixing time (3.5 min) than "Keumkang" (11.0%, 59.7 ml and 4.5 min, respectively). Amylose content and pasting properties of "Jeokjoong" were similar to "Keumkang". "Jeokjoong" had softer and more elastic texture of cooked noodles than "Keumkang". Average yield of "Jeokjoong" in the regional adaptation yield trial was 6.19 MT ha-1 in upland and 5.33 MT/ha in paddy field, which was 19% and 16% higher than those of "Keumkang" (5.21 MT/ha and 4.58 MT/ha, respectively). "Jeokjoong" would be suitable for the area above the daily minimum temperature of $-10^{\circ}C$ in January in Korean peninsula.

A New Wheat Variety, "Sukang" with Good Noodle Quality, Resistant to Winter Hardiness and Pre-harvest Sprouting (내한 내수발아성 제면용 밀 신품종 "수강밀")

  • Park, Chlul Soo;Heo, Hwa-Young;Kang, Moon-Suk;Kim, Hong-Sik;Park, Hyung-Ho;Park, Jong-Chul;Kang, Chon-Sik;Kim, Hag-Sin;Cheong, Young-Keun;Park, Ki-Hun
    • Korean Journal of Breeding Science
    • /
    • v.41 no.1
    • /
    • pp.44-50
    • /
    • 2009
  • "Sukang", a winter wheat (Triticum aestivum L.) cultivar was developed by the National Institute of Crop Science, RDA. It was derived from the cross "Suwon266" / "Asakaze" during 1994. "Sukang" was evaluated as "Iksan312" in Advanced Yield Trial Test in 2005. It was tested in the regional yield trial test between 2006 and 2008. "Sukang" is an awned, semi-dwarf and hard winter wheat, similar to "Keumkang" (check cultivar). The heading and maturing date of "Sukang" were similar to "Keumkang". Culm and spike length of "Sukang" were 90 cm and 8.1 cm, longer culm length and similar spike length compared to "Keumkang" (80 cm and 7.9 cm, respectively). "Sukang" had similar test weight (819 g/L) and lower 1,000-grain weight (40.2 g) than "Keumkang" (813 g/L and 44.9 g, respectively). "Sukang" showed resistance to winter hardiness and pre-harvest sprouting, which lower withering rate on the high ridge (4.5%) and rate of pre-harvest sprouting (0.2%) than "Keumkang" (21.9% and 30.4%, respectively). "Sukang" had lower flour yield (71.1%) and higher ash content (0.45%) than "Keumkang" (74.1% and 0.42%, respectively). "Sukang" showed lower lightness (89.13) and higher yellowness (10.93) in flour color than "Keumkang" (90.02 and 9.28, respectively). It showed higher protein content (12.8%) and gluten content (11.1%) and lower SDS-sedimentation volume (56.8 ml) and mixing time of mixograph (2.6 min) than "Keumkang" (11.9%, 10.2%, 62.3 ml and 4.7 min, respectively). Fermentation properties, amylose content and pasting properties of "Sukang" were similar to "Keumkang". "Sukang" showed different compositions in high molecular weight glutenin subunits (HMW-GS, $2^{\ast}$, 13+16, 2+12) and puroindolines (pina-1b/pinb-1a) compared to "Keumkang" ($2^{\ast}$, 7+8, 5+10 in HMW-GS and Pina-1a/Pinb-1b in puroindolines, respectively). "Sukang" showed lower hardness (4.53 N) and similar springiness and cohesiveness of cooked noodles (0.94 and 0.63) compared to "Keumkang" (4.65 N, 0.93 and 0.64, respectively). Average yield of "Sukang" in the regional adaptation yield trial was 5.34 MT/ha in upland and 4.72 MT/ha in paddy field, which was 4% and 1% lower than those of "Keumkang" (5.55 MT/ha and 4.77 MT/ha, respectively). "Sukang" would be suitable for the area above $-10^{\circ}C$ of daily minimum temperature in January in Korean peninsula.

A New White Wheat Variety, "Baegjoong" with High Yield, Good Noodle Quality and Moderate to Pre-harvest Sprouting (백립계 다수성 수발아 중도저항성 제면용 밀 신품종 "백중밀")

  • Park, Chul Soo;Heo, Hwa-Young;Kang, Moon-Suk;Lee, Chun-Kee;Park, Kwang-Geun;Park, Jong-Chul;Kim, Hong-Sik;Kim, Hag-Sin;Hwang, Jong-Jin;Cheong, Young-Keun;Kim, Jung-Gon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.153-158
    • /
    • 2008
  • "Baegjoong", a white winter wheat (Triticum aestivum L.) cultivar was developed by the National Institute of Crop Science, RDA. It was derived from the cross "Keumkang"/"Olgeuru" during 1996. "Baegjoong" was evaluated as "Iksan307" in Advanced Yield Trial Test in 2004. It was tested in the regional yield trial test between 2005 and 2007. "Baegjoong" is an awned, semi-dwarf and soft white winter wheat, similar to "Keumkang" (check cultivar). The heading and maturing date of "Baegjoong" were similar to "Keumkang". Culm and spike length of "Baegjoong" were 77 cm and 7.5 cm, similar to "Keumkang". "Baegjoong" had lower test weight (802 g) and lower 1,000-grain weight (39.8 g) than "Keumkang" (811 g and 44.0 g, respectively). It had resistance to winter hardiness, wet-soil tolerance and lodging tolerance. "Baegjoong" showed moderate to pre-harvest sprouting (23.9%) although "Keumkang" is susceptible to pre-harvest sprouting (38.9%). "Baegjoong" had similar flour yield (72.4%) and ash content (0.41%) to "Keumkang" (72.0% and 0.41%, respectively) and similar flour color to "Keumkang". It showed lower protein content (8.8%) and SDS-sedimentation volume (35.3 ml) and shorter mixograph mixing time (3.8 min) than "Keumkang" (11.0%, 59.7 ml and 4.5 min, respectively). Amylose content and pasting properties of "Baegjoong" were similar to "Keumkang". "Baegjoong" had softer and more elastic texture of cooked noodles than "Keumkang". Average yield of "Baegjoong" in the regional adaptation yield trial was $5.88\;MT\;ha^{-1}$ in upland and 5.35 MT ha-1 in paddy field, which was 13% and 17% higher than those of "Keumkang" ($5.21\;MT\;ha^{-1}$ and $4.58\;MT\;ha^{-1}$, respectively). "Baegjoong" would be suitable for the area above the daily minimum temperature of $-10^{\circ}C$ in January in Korean peninsula.

Analysis of agricultural characteristics and qualities of wheat under high temperature

  • Cheong, Young-Keun;Yoon, Young-Mi;Kang, Chon-Sik;Son, Jae-Han;Park, Jong-Chul;Kim, Yang-Kil;Park, Jong-Ho;Song, Tae-Hwa;Park, Tae-Il;Kim, Kyong-Ho;Kim, Bo-Kyeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.260-260
    • /
    • 2017
  • High temperature is one of major environmental stress. Heat in flowering season of wheat is able to effect negatively to fertilization and also heat effect to maturity. Therefore, Heat stress effects severely to qualities of wheat and yield productivity. In this study, we evaluated to agronomic characteristics and qualities by high temperature in 13 Korean wheat varieties. Weight of 1,000 grains decreased when wheat got the heat stress. In particular, heat stress during the heading dates were more damaged than after the end of heading dates except two varieties Keumkang and Jokyoung. Plant height of each cultivar under high temperature and normal field averaged 80.5 cm and 83.0cm, respectively. The length of spike and awn in each cultivar were similar to both condition. Flour yield and gluten contents of most heat damaged wheat decreased. Under the temperature, protein contents of six varieties like as Keumkang, Baekjoong, Hojoong, Yeonbaek, Joah and Shinmichal 1 decreased but the others increased. The sedimentation values (SDSF) of four varieties decreased under the high temperature. But SDSF of 7 varieties like as Baekjung, Suan, Hojoong, Jojoong, Uri, Shinmichal and Shinmichal 1 was increased. The lightness (L) of wheat flour derived from high temperature treated wheat was darker than non-treated wheat. As a result of this research, we confirmed that agricultural traits and qualities decreased in heat damaged wheat.

  • PDF

Effect of nitrogen fertilize application levels on yield and quality of Korean wheat cultivars

  • Kim, Kyeong-Min;Kim, Kyeong-Hoon;Kim, Hag-Sin;Shin, Dong Jin;Kim, Young-Jin;Oh, Myeong-Gyu;Hyun, Jong-Nae
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.1
    • /
    • pp.9-18
    • /
    • 2018
  • This study was done to determine the effect of additional nitrogen fertilization on the yield and quality of the Korean wheat cultivars Keumkang, Jokyoung, Baegjoong, Sooan, Uri and Goso. Different levels of nitrogen applications (109, 82, 55, 41, and 27 kg/ha) were applied to six cultivars. The results show that the yield and protein contents were increased in all tested cultivars. The grain yields of the cultivars Keumkang, Jokyoung, Baegjoong and Sooan were greatly increased in the case of double fertilization treatments. Moreover, Uri and Goso had greatly increased yields by the additional fertilization at a 50% rate compared with korea wheat standard fertilization rate. A significantly higher yield was observed in Uri. Baegjoong was the highest yielding cultivar among the tested cultivars with the additional nitrogen fertilization. As the fertilization was increased up to double the fertilization treatment, the yield of Baegjoong also showed a constant increase. Positive correlations were found between the nitrogen fertilizer application levels and the protein contents of the grain in all the cultivars except for Uri, and among these, Jokyoung had a most significant correlation between the nitrogen fertilizer application level and the increase in its protein contents. Keumkang had the highest protein contents and highest increase in the protein content change according to the amount of nitrogen application. However, amylose, damaged starch and ash contents were not significantly changed by the different levels of nitrogen applications.

Comparison of Gene Expression Changes in Three Wheat Varieties with Different Susceptibilities to Heat Stress Using RNA-Seq Analysis

  • Myoung Hui Lee;Kyeong-Min Kim;Wan-Gyu Sang;Chon-Sik Kang;Changhyun Choi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.197-197
    • /
    • 2022
  • Wheat is highly susceptible to heat stress, which significantly reduces grain yield. In this study, we used RNA-seq technology to analyze the transcript expression at three different time-points after heat treatment in three cultivars differing in their susceptibility to heat stress: Jopum, Keumkang, and Olgeuru. A total of 11,751, 8850, and 14,711; 10,959,7946, and 14,205; and 22,895,13,060, and 19,408 differentially-expressed genes (log2 fold-change > 1 and FDR (padj) < 0.05) were identified in Jopum, Keumkang, and Olgeuru in the control vs. 6-h, in the control vs. 12-h, and in the 6-h vs. 12-h heat treatment, respectively. Functional enrichment analysis showed that the biological processes for DEGs, such as the cellular response to heat and oxidative stress-and including the removal of superoxide radicals and the positive regulation of superoxide dismutase activity-were significantly enriched among the three comparisons in all three cultivars. Furthermore, we investigated the differential expression patterns of reactive oxygen species (ROS)-scavenging enzymes, heat shock proteins, and heat-stress transcription factors using qRT-PCR to confirm the differences in gene expression among the three varieties under heat stress. This study contributes to a better understanding of the wheat heat-stress response at the early growth stage and the varietal differences in heat tolerancea.

  • PDF

Changes in Natural Antioxidants in Oils Extracted from the Bran and Germ of Keumkang and Dark Northern Spring Wheats During Photo-oxidation (금강밀과 dark northern spring밀의 기울과 배아에서 추출한 기름의 광산화 과정 중 천연산화방지성분의 변화)

  • Choi, Hyun-Ki;Choe, Eun-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.14-20
    • /
    • 2010
  • Naturally present antioxidants, tocopherols, carotenoids, and phospholipids in the bran and germ oils from Keumkang (K-WBG oil) and Dark Northern Spring wheats (DNS-WBG oil) were determined during storage under 1700 lux light at $5^{\circ}C$ by HPLC. Oil oxidation was monitored by peroxide values (POV) and conjugated dienoic acid content. The results showed that antioxidants were degraded during storage of the WBG oils under light, with higher degradation rates for carotenoids and phospholipids in the K-WBG oil compared to the DNS-WBG oil. Light increased oil oxidation and the rate of oxidation was higher in K-WBG oil than in the DNS-WBG oil. There was a high correlation between POV and residual amounts of antioxidants during photo-oxidation, with phospholipids showing the greatest effects on POV. This study suggests that a higher amount and lower degradation rate of phospholipids in the DNS-WBG oil contributed to its higher photo-oxidative stability compared to the K-WBG oil.