• Title/Summary/Keyword: Kernel-ART

Search Result 39, Processing Time 0.02 seconds

A Max-Flow-Based Similarity Measure for Spectral Clustering

  • Cao, Jiangzhong;Chen, Pei;Zheng, Yun;Dai, Qingyun
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.311-320
    • /
    • 2013
  • In most spectral clustering approaches, the Gaussian kernel-based similarity measure is used to construct the affinity matrix. However, such a similarity measure does not work well on a dataset with a nonlinear and elongated structure. In this paper, we present a new similarity measure to deal with the nonlinearity issue. The maximum flow between data points is computed as the new similarity, which can satisfy the requirement for similarity in the clustering method. Additionally, the new similarity carries the global and local relations between data. We apply it to spectral clustering and compare the proposed similarity measure with other state-of-the-art methods on both synthetic and real-world data. The experiment results show the superiority of the new similarity: 1) The max-flow-based similarity measure can significantly improve the performance of spectral clustering; 2) It is robust and not sensitive to the parameters.

An End-to-End Sequence Learning Approach for Text Extraction and Recognition from Scene Image

  • Lalitha, G.;Lavanya, B.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.220-228
    • /
    • 2022
  • Image always carry useful information, detecting a text from scene images is imperative. The proposed work's purpose is to recognize scene text image, example boarding image kept on highways. Scene text detection on highways boarding's plays a vital role in road safety measures. At initial stage applying preprocessing techniques to the image is to sharpen and improve the features exist in the image. Likely, morphological operator were applied on images to remove the close gaps exists between objects. Here we proposed a two phase algorithm for extracting and recognizing text from scene images. In phase I text from scenery image is extracted by applying various image preprocessing techniques like blurring, erosion, tophat followed by applying thresholding, morphological gradient and by fixing kernel sizes, then canny edge detector is applied to detect the text contained in the scene images. In phase II text from scenery image recognized using MSER (Maximally Stable Extremal Region) and OCR; Proposed work aimed to detect the text contained in the scenery images from popular dataset repositories SVT, ICDAR 2003, MSRA-TD 500; these images were captured at various illumination and angles. Proposed algorithm produces higher accuracy in minimal execution time compared with state-of-the-art methodologies.

Using machine learning for anomaly detection on a system-on-chip under gamma radiation

  • Eduardo Weber Wachter ;Server Kasap ;Sefki Kolozali ;Xiaojun Zhai ;Shoaib Ehsan;Klaus D. McDonald-Maier
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.3985-3995
    • /
    • 2022
  • The emergence of new nanoscale technologies has imposed significant challenges to designing reliable electronic systems in radiation environments. A few types of radiation like Total Ionizing Dose (TID) can cause permanent damages on such nanoscale electronic devices, and current state-of-the-art technologies to tackle TID make use of expensive radiation-hardened devices. This paper focuses on a novel and different approach: using machine learning algorithms on consumer electronic level Field Programmable Gate Arrays (FPGAs) to tackle TID effects and monitor them to replace before they stop working. This condition has a research challenge to anticipate when the board results in a total failure due to TID effects. We observed internal measurements of FPGA boards under gamma radiation and used three different anomaly detection machine learning (ML) algorithms to detect anomalies in the sensor measurements in a gamma-radiated environment. The statistical results show a highly significant relationship between the gamma radiation exposure levels and the board measurements. Moreover, our anomaly detection results have shown that a One-Class SVM with Radial Basis Function Kernel has an average recall score of 0.95. Also, all anomalies can be detected before the boards are entirely inoperative, i.e. voltages drop to zero and confirmed with a sanity check.

A Model-based Methodology for Application Specific Energy Efficient Data path Design Using FPGAs (FPGA에서 에너지 효율이 높은 데이터 경로 구성을 위한 계층적 설계 방법)

  • Jang Ju-Wook;Lee Mi-Sook;Mohanty Sumit;Choi Seonil;Prasanna Viktor K.
    • The KIPS Transactions:PartA
    • /
    • v.12A no.5 s.95
    • /
    • pp.451-460
    • /
    • 2005
  • We present a methodology to design energy-efficient data paths using FPGAs. Our methodology integrates domain specific modeling, coarse-grained performance evaluation, design space exploration, and low-level simulation to understand the tradeoffs between energy, latency, and area. The domain specific modeling technique defines a high-level model by identifying various components and parameters specific to a domain that affect the system-wide energy dissipation. A domain is a family of architectures and corresponding algorithms for a given application kernel. The high-level model also consists of functions for estimating energy, latency, and area that facilitate tradeoff analysis. Design space exploration(DSE) analyzes the design space defined by the domain and selects a set of designs. Low-level simulations are used for accurate performance estimation for the designs selected by the DSE and also for final design selection We illustrate our methodology using a family of architectures and algorithms for matrix multiplication. The designs identified by our methodology demonstrate tradeoffs among energy, latency, and area. We compare our designs with a vendor specified matrix multiplication kernel to demonstrate the effectiveness of our methodology. To illustrate the effectiveness of our methodology, we used average power density(E/AT), energy/(area x latency), as themetric for comparison. For various problem sizes, designs obtained using our methodology are on average $25\%$ superior with respect to the E/AT performance metric, compared with the state-of-the-art designs by Xilinx. We also discuss the implementation of our methodology using the MILAN framework.

Reducing latency of neural automatic piano transcription models (인공신경망 기반 저지연 피아노 채보 모델)

  • Dasol Lee;Dasaem Jeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.2
    • /
    • pp.102-111
    • /
    • 2023
  • Automatic Music Transcription (AMT) is a task that detects and recognizes musical note events from a given audio recording. In this paper, we focus on reducing the latency of real-time AMT systems on piano music. Although neural AMT models have been adapted for real-time piano transcription, they suffer from high latency, which hinders their usefulness in interactive scenarios. To tackle this issue, we explore several techniques for reducing the intrinsic latency of a neural network for piano transcription, including reducing window and hop sizes of Fast Fourier Transformation (FFT), modifying convolutional layer's kernel size, and shifting the label in the time-axis to train the model to predict onset earlier. Our experiments demonstrate that combining these approaches can lower latency while maintaining high transcription accuracy. Specifically, our modified model achieved note F1 scores of 92.67 % and 90.51 % with latencies of 96 ms and 64 ms, respectively, compared to the baseline model's note F1 score of 93.43 % with a latency of 160 ms. This methodology has potential for training AMT models for various interactive scenarios, including providing real-time feedback for piano education.

Brand Imaging a City for Tourism (관광 콘텐츠 개발을 위한 도시 브랜드화)

  • Lim, Seong-Taek
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.3
    • /
    • pp.127-137
    • /
    • 2008
  • Major purpose of brand establishment of city is to give pride for the citizen and to enhance the city value through improving city image. As modern society wants aggressive and active attitude from all fields, the city, which means as human place of residence, has to try to change for human life and prosperity. It is true that the establishment of brand is shown through politics, economy, society, culture and art, however travel effect and profit creation should be most important. In actual circumstance of our country, that travel deficit is getting increased. the brand establishment of city is more concerned. To build a city, history and time is essential elements. It may be impossible that consistent direction and meaning continue throughout long terms, but after all, the kernel of tourism contents is that idea and development is concentrated focusing consistent direction and meaning. To solve this, problem of strategy and direction was researched through analysis of foreign cities, and also understanding of future role of city in 21st century make a base for rebirth as international travel city. After city brand establishment based on continuous management, it is very important to make city which has strong image power.

Intrusion Detection System Based on Multi-Class SVM (다중 클래스 SVM기반의 침입탐지 시스템)

  • Lee Hansung;Song Jiyoung;Kim Eunyoung;Lee Chulho;Park Daihee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.282-288
    • /
    • 2005
  • In this paper, we propose a new intrusion detection model, which keeps advantages of existing misuse detection model and anomaly detection model and resolves their problems. This new intrusion detection system, named to MMIDS, was designed to satisfy all the following requirements : 1) Fast detection of new types of attack unknown to the system; 2) Provision of detail information about the detected types of attack; 3) cost-effective maintenance due to fast and efficient learning and update; 4) incrementality and scalability of system. The fast and efficient training and updating faculties of proposed novel multi-class SVM which is a core component of MMIDS provide cost-effective maintenance of intrusion detection system. According to the experimental results, our method can provide superior performance in separating similar patterns and detailed separation capability of MMIDS is relatively good.

BPFast: An eBPF/XDP-Based High-Performance Packet Payload Inspection System for Cloud Environments (BPFast: 클라우드 환경을 위한 eBPF/XDP 기반 고속 네트워크 패킷 페이로드 검사 시스템)

  • You, Myoung-sung;Kim, Jin-woo;Shin, Seung-won;Park, Tae-june
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.213-225
    • /
    • 2022
  • Containerization, a lightweight virtualization technology, enables agile deployments of enterprise-scale microservices in modern cloud environments. However, containerization also opens a new window for adversaries who aim to disrupt the cloud environments. Since microservices are composed of multiple containers connected through a virtual network, a single compromised container can carry out network-level attacks to hijack its neighboring containers. While existing solutions protect containers against such attacks by using network access controls, they still have severe limitations in terms of performance. More specifically, they significantly degrade network performance when processing packet payloads for L7 access controls (e.g., HTTP). To address this problem, we present BPFast, an eBPF/XDP-based payload inspection system for containers. BPFast inspects headers and payloads of packets at a kernel-level without any user-level components. We evaluate a prototype of BPFast on a Kubernetes environment. Our results show that BPFast outperforms state-of-the-art solutions by up to 7x in network latency and throughput.

Efficient Thread Allocation Method of Convolutional Neural Network based on GPGPU (GPGPU 기반 Convolutional Neural Network의 효율적인 스레드 할당 기법)

  • Kim, Mincheol;Lee, Kwangyeob
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.10
    • /
    • pp.935-943
    • /
    • 2017
  • CNN (Convolution neural network), which is used for image classification and speech recognition among neural networks learning based on positive data, has been continuously developed to have a high performance structure to date. There are many difficulties to utilize in an embedded system with limited resources. Therefore, we use GPU (General-Purpose Computing on Graphics Processing Units), which is used for general-purpose operation of GPU to solve the problem because we use pre-learned weights but there are still limitations. Since CNN performs simple and iterative operations, the computation speed varies greatly depending on the thread allocation and utilization method in the Single Instruction Multiple Thread (SIMT) based GPGPU. To solve this problem, there is a thread that needs to be relaxed when performing Convolution and Pooling operations with threads. The remaining threads have increased the operation speed by using the method used in the following feature maps and kernel calculations.