• 제목/요약/키워드: Kernel machines

검색결과 87건 처리시간 0.023초

실수 지수 메트릭으로 구성된 스트링 커널을 이용한 신호펩티드의 절단위치 예측 (Signal Peptide Cleavage Site Prediction Using a String Kernel with Real Exponent Metric)

  • 지상문
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권10호
    • /
    • pp.786-792
    • /
    • 2009
  • 지지벡터기계는 자료간의 유사도를 커널함수를 사용하여 계산하고, 이러한 유사도를 이용하여 패턴을 분류하는 최적인 초평면을 구한다. 따라서 자료의 특성을 효과적으로 반영할 수 있는 유사도의 사용이 중요하다. 본 연구에서는 아미노산 서열간의 최적의 유사도를 얻기 위해서, 아미노산의 진화적인 관계와 소수성으로부터 유도된 메트릭을 실수 지수를 가지는 형태로 일반화하였다. 제안한 메트릭이 메트릭의 조건을 만족하고, 아미노산 서열과 DNA 서열의 유사도를 계산하기 위해서 널리 사용되는 스트링 커널내에서 이용되는 메트릭파의 관련성을 알아본다. 또한, 적용하려는 문제에 보다 효과적인 메트릭을 일반화 메트릭에서 찾을 수 있음을 신호펩티드의 절단위치 예측실험을 통하여 알아본다.

IOMMU Para-Virtualization for Efficient and Secure DMA in Virtual Machines

  • Tang, Hongwei;Li, Qiang;Feng, Shengzhong;Zhao, Xiaofang;Jin, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권12호
    • /
    • pp.5375-5400
    • /
    • 2016
  • IOMMU is a hardware unit that is indispensable for DMA. Besides address translation and remapping, it also provides I/O virtual address space isolation among devices and memory access control on DMA transactions. However, currently commodity virtualization platforms lack of IOMMU virtualization, so that the virtual machines are vulnerable to DMA security threats. Previous works focus only on DMA security problem of directly assigned devices. Moreover, these solutions either introduce significant overhead or require modifications on the guest OS to optimize performance, and none can achieve high I/O efficiency and good compatibility with the guest OS simultaneously, which are both necessary for production environments. However, for simulated virtual devices the DMA security problem also exists, and previous works cannot solve this problem. The reason behind that is IOMMU circuits on the host do not work for this kind of devices as DMA operations of which are simulated by memory copy of CPU. Motivated by the above observations, we propose an IOMMU para-virtualization solution called PVIOMMU, which provides general functionalities especially DMA security guarantees for both directly assigned devices and simulated devices. The prototype of PVIOMMU is implemented in Qemu/KVM based on the virtio framework and can be dynamically loaded into guest kernel as a module, As a result, modifying and rebuilding guest kernel are not required. In addition, the device model of Qemu is revised to implement DMA access control by separating the device simulator from the address space of the guest virtual machine. Experimental evaluations on three kinds of network devices including Intel I210 (1Gbps), simulated E1000 (1Gbps) and IB ConnectX-3 (40Gbps) show that, PVIOMMU introduces little overhead on DMA transactions, and in general the network I/O performance is close to that in the native KVM implementation without IOMMU virtualization.

결함유형별 최적 특징과 Support Vector Machine 을 이용한 회전기계 결함 분류 (Fault Classification for Rotating Machinery Using Support Vector Machines with Optimal Features Corresponding to Each Fault Type)

  • 김양석;이도환;김성국
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1681-1689
    • /
    • 2010
  • Support Vector Machine(SVM)을 이용한 회전기계 진단 연구가 많이 수행되어 왔으나 결함 분류성능은 입력 특징과 더불어 다중 분류 방법, 이진분류기, 커널함수 등에 따라 다르다. SVM 을 이용한 대부분의 기존 연구들은 한번 입력 특징들을 선정하면 결함 분류시 동일한 특징데이터를 이용한다. 본 논문에서는 회전기계의 다양한 결함조건에서 측정한 진동신호로부터 추출한 통계적 특징들을 이용하여 각각의 결함을 분류하기 위한 최적 특징들을 선정한 후, 해당 결함상태를 분류하기 위한 SVM 학습과 분류에 각각 이용하였다. 실험자료를 이용한 검증 결과, 제안한 단계 분류 방법이 상대적으로 적은 학습시간으로 단일 다중 분류 방법과 유사한 분류 성능을 얻을 수 있었다.

재무예측을 위한 Support Vector Machine의 최적화 (Optimization of Support Vector Machines for Financial Forecasting)

  • 김경재;안현철
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.241-254
    • /
    • 2011
  • Support vector machines(SVM)은 비교적 최근에 등장한 데이터마이닝 기법이지만, 재무, CRM 등의 경영학 분야에서 많이 연구되고 있다. SVM은 인공신경망과 필적할 만큼의 예측 정확도를 보이는 사례가 많았지만, 암상자로 불리는 인공신경망 모형에 비해 구축된 예측모형의 구조를 이해하기 쉽고, 인공신경망에 비해 과도적합의 가능성이 적어서 적은 수의 데이터에서도 적용 가능하다는 장점을 가지고 있다. 하지만, 일반적인 SVM을 이용하려면, 인공신경망과 마찬가지로 여러 가지 설계요소들을 설계자가 선택하여야 하기 때문에 임의성이 높고, 국부 최적해에 수렴할 가능성도 크다. 또한, 많은 수의 데이터가 존재하는 경우에는 데이터를 분석하고 이용하는데 시간이 소요되고, 종종 잡음이 심한 데이터가 포함된 경우에는 기대하는 수준의 예측성과를 얻지 못할 가능성이 있다. 본 연구에서는 일반적인 SVM의 장점을 그대로 유지하면서, 전술한 두 가지 단점을 보완한 새로운 SVM 모형을 제안한다. 본 연구에서 제안하는 모형은 사례선택기법을 일반적인 SVM에 융합한 것으로 대용량의 데이터에서 예측에 불필요한 데이터를 선별적으로 제거하여 예측의 정확도와 속도를 제고할 수 있는 방법이다. 본 연구에서는 잡음이 많고 예측이 어려운 것으로 알려진 재무 데이터를 활용하여 제안 모형의 유용성을 확인하였다.

Support Vector Machines을 이용한 다중 클래스 문제 해결 (Solving Multi-class Problem using Support Vector Machines)

  • 고재필
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권12호
    • /
    • pp.1260-1270
    • /
    • 2005
  • 최근 기계학습 분야에서 커널머신을 이용한 대표적 학습기로 Support Vector Machines (SVM)이 주목 받고 있다. SVM은 통계적 학습이론에 기반하여 뛰어난 일반화 성능을 보여주며, 다양한 패턴인식 문제에 적용되고 있다. 그러나. SVM은 이진 분류기이므로 일반적인 다중 클래스 문제에 곧바로 적용할 수 없다. SVM을 다중 클래스 문제의 하나인 얼굴인식에 도입하기 위한 방법으로는, One-Per-Class와 All-Pairs가 대표적이다. 상기 두 방법은 다중 클래스 문제를 여러 개의 이진 클래스 문제로 분할하고, 이들을 다시 종합하여 최종 결정을 내리는 출력코딩이라는 일반적인 방법에 속한다. 본 논문에서는 이진 분류기인 SVM의 다중 클래스 분류기 확장 방안으로 출력코딩 방법론을 설명한다. 또한 출력코딩 방법론의 대표적인 이론적 기반인 ECOC(Ewor-Correcting Output Codes)를 근간으로 하는 새로운 출력코딩 방법들을 제안하고, 얼굴인식 실험을 통해 SVM을 기반 분류기로 사용할 경우의, 출력코딩 방법의 특성을 비교$\cdot$분석한다.

SVM을 이용한 유방 종양 조직 영상의 분류 (A Classification of Breast Tumor Tissue Images Using SVM)

  • 황해길;최현주;윤혜경;최흥국
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.178-181
    • /
    • 2005
  • Support vector machines is a powerful learning algorithm and attempt to separate belonging to two given sets in N-dimensional real space by a nonlinear surface, often only implicitly dened by a kernel function. We described breast tissue images analyses using texture features from Haar wavelet transformed images to classify breast lesion of ductal organ Benign, DCIS and CA. The approach for creating a classifier is composed of 2 steps: feature extraction and classification. Therefore, in the feature extraction step, we extracted texture features from wavelet transformed images with $10{\times}$ magnification. In the classification step, we created four classifiers from each image of extracted features using SVM(Support Vector Machines). In this study, we conclude that the best classifier in histological sections of breast tissue in the texture features from second-level wavelet transformed images used in Polynomial function.

  • PDF

E-quality control: A support vector machines approach

  • Tseng, Tzu-Liang (Bill);Aleti, Kalyan Reddy;Hu, Zhonghua;Kwon, Yongjin (James)
    • Journal of Computational Design and Engineering
    • /
    • 제3권2호
    • /
    • pp.91-101
    • /
    • 2016
  • The automated part quality inspection poses many challenges to the engineers, especially when the part features to be inspected become complicated. A large quantity of part inspection at a faster rate should be relied upon computerized, automated inspection methods, which requires advanced quality control approaches. In this context, this work uses innovative methods in remote part tracking and quality control with the aid of the modern equipment and application of support vector machine (SVM) learning approach to predict the outcome of the quality control process. The classifier equations are built on the data obtained from the experiments and analyzed with different kernel functions. From the analysis, detailed outcome is presented for six different cases. The results indicate the robustness of support vector classification for the experimental data with two output classes.

VRIFA: LRBF 커널과 Nomogram을 이용한 예측 및 비선형 SVM 시각화도구 (VRIFA: A Prediction and Nonlinear SVM Visualization Tool using LRBF kernel and Nomogram)

  • 김성철;유환조
    • 한국멀티미디어학회논문지
    • /
    • 제13권5호
    • /
    • pp.722-729
    • /
    • 2010
  • 예측 문제를 해결하기 위한 데이타마이닝 기법은 다양한 분야에서 주목받고 있다. 이것에 대한 한 예로 컴퓨터-기반의 질병의 예측 혹은 진단은 CDSS(Clinical Decision support System)에서 가장 중요한 요소이기도 하다. 이러한 예측 문제를 해결하기 위해서 RBF커널 같은 비선형 커널을 사용한 SVM이 가장 널리 사용되고 있는데, 이는 비선형 SVM이 어떠한 다른 분류기법보다 정확한 성능을 보이기 때문이다. 하지만 비선형 SVM을 사용한 경우에는 모델내부를 시각화하는 일이 어려워서 예측결과에 대한 직관적인 이해가 힘들고, 의학 전문가들은 이러한 비선형 SVM의 사용을 기피하고 있는 실정이다. Nomogram은 SVM을 시각화하기 위해 제안된 기법이다. 하지만 이는 선형 SVM의 경우에만 사용이 가능하고. 이 문제를 해결하기 위해서 LRBF 커널이 제안된 바 있다. LRBF 커널은 기존의 RBF 커널을 사용한 SVM과 대등한 결과를 보이면서도 예측결과의 선형적 분석도 가능하게 한다. 본 논문에서는 노모그램(Nomogram)과 LRBF 커널을 사용한 SVM이 통합되어 있는 예측 툴 VRIFA를 제안한다. 이 툴은 사용자와 상호작용하며 비선형 SVM 모델의 내부구조를 데이타의 각 속성별로 보여주는 방법으로 사용자가 예측결과를 직관적으로 이해하도록 도와준다. VRIFA는 Nomogram기반의 피쳐선택(feature selection) 기능도 포함하고 있는데, 이 기능은 예측결과에 부정적인 영향을 끼치거나 중복된 연관성을 보이는 속성을 제거함으로써 모델의 정확도를 높이는 데 기여한다. 그리고 데이터에 포함된 클래스의 비율이 한 쪽으로 치우쳐져 있는 경우에는 ROC 곡선 넓이(AUC)를 예측결과를 평가하기 위한 측도로 사용할 수 있다. 이 툴은 컴퓨터-기반의 질병 예측 혹은 질병의 위험 요소 분석에 대해 연구하는 연구자들에게 유용하게 사용될 것으로 전망하는 바이다.

GMM-Based Maghreb Dialect Identification System

  • Nour-Eddine, Lachachi;Abdelkader, Adla
    • Journal of Information Processing Systems
    • /
    • 제11권1호
    • /
    • pp.22-38
    • /
    • 2015
  • While Modern Standard Arabic is the formal spoken and written language of the Arab world; dialects are the major communication mode for everyday life. Therefore, identifying a speaker's dialect is critical in the Arabic-speaking world for speech processing tasks, such as automatic speech recognition or identification. In this paper, we examine two approaches that reduce the Universal Background Model (UBM) in the automatic dialect identification system across the five following Arabic Maghreb dialects: Moroccan, Tunisian, and 3 dialects of the western (Oranian), central (Algiersian), and eastern (Constantinian) regions of Algeria. We applied our approaches to the Maghreb dialect detection domain that contains a collection of 10-second utterances and we compared the performance precision gained against the dialect samples from a baseline GMM-UBM system and the ones from our own improved GMM-UBM system that uses a Reduced UBM algorithm. Our experiments show that our approaches significantly improve identification performance over purely acoustic features with an identification rate of 80.49%.

Polychotomous Machines;

  • Koo, Ja-Yong;Park, Heon Jin;Choi, Daewoo
    • Communications for Statistical Applications and Methods
    • /
    • 제10권1호
    • /
    • pp.225-232
    • /
    • 2003
  • The support vector machine (SVM) is becoming increasingly popular in classification. The import vector machine (IVM) has been introduced for its advantages over SMV. This paper tries to improve the IVM. The proposed method, which is referred to as the polychotomous machine (PM), uses the Newton-Raphson method to find estimates of coefficients, and the Rao and Wald tests, respectively, for addition and deletion of import points. Because the PM basically follows the same addition step and adopts the deletion step, it uses, typically, less import vectors than the IVM without loosing accuracy. Simulated and real data sets are used to illustrate the performance of the proposed method.