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Polychotomous Machines

Ja-Yong Kool) and Heon Jin Park2) and Daewoo Choi¥

Abstract

The support vector machine (SVM) is becoming increasingly popular in
classification. The import vector machine (IVM) has been introduced for its
advantages over SMV. This paper tries to improve the IVM. The proposed method,
which is referred to as the polychotomous machine (PM), uses the Newton-Raphson
method to find estimates of coefficients, and the Rao and Wald tests, respectively, for
addition and deletion of import points. Because the PM basically follows the same
addition step and adopts the deletion step, it uses, typically, less import vectors than
the IVM without loosing accuracy. Simulated and real data sets are used to illustrate
the performance of the proposed method.

Keywords : classification, import vector, maximum likelihood, Newton-Raphson, reproducing
kernel, stepwise algorithm

1. Introduction

One of the fundamental problems of learning theory is the multiple classification problem.
Suppose we are given multi-classes of objects, each of which consists of a predictor x and a
qualitative label y. Let the labels y € M={1,..., M} When M=2 the classification is
referred to as binary classification;, when M»2 , it becomes a polychotomous classification
problem. A polychotomous learning algorithm uses the training data L= {(x,,y,):n=1,...,N}
to construct a function C= C(x, Lyuch that we have to assign a new input x to one of the

M classes.
The support vector machine (SVM) is becoming increasingly more popular in classification
problems with many successful applications, see Schélkopt and Smola(2002) and Vapnik (1998).
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The SVM can be described by a positive definite reproducing kernel K. Zhu and Hastie
(2001) has proposed the import vector machine (IVM) based on the following observation that

fitting an SVM 1is equivalent to minimizing over fe Hg

L3 A=y, ) + Allfll g,

and the loss (1— yf)can be approximated by the binomial likelihood. It has been shown that
the IVM has advantages over the SVM in the following aspects: (i) the IVM can naturally
handle the polychotomous classification problem; (ii) the IVM can provide estimates of the
posterior probabilities P(Y=F% | X=1%)(iii) the computational cost of the IVM is typically
cheaper than that of the SVM of Zhu and Hastie (2001).

This paper proposes a polychotomous machine (PM) which is an improved version of the
IVM. The PM tries to improve the performance of IVM in three respects. We use the
Newton-Raphson method to find estimates of coefficients, and the Rao and Wald tests,
respectively, for addition and deletion of import points. One may have to use one-step
Newton-Raphson method when the computation of estimates is computationally prohibitive for
N large. However, the stepwise deletion step can be carried out with small amount of extra
computation, because the deletion algorithm is much less computer intensive than the addition
algorithm. Because the PM basically follows the same addition step as the IVM and adopts
the deletion step, it uses, typically, less import vectors than the IVM without loosing
accuracy. A limited number of numerical simulations have shown that the number of the
import points from PM is usually less than the number of import points from IVM.

This paper is organized as follows. Section 2 describes the polychotomous machines.
Section 3 explains the stepwise algorithm for the selection of the import points. Section 4
illustrate the performance of the proposed algorithm via simulations using both real and

simulated data sets.

2. Polychotomous machine

Consider a training data L= {(x,,v,):n=1,..., Mhere the instances x, belong to some
domain XCR? and the labels y,& M={l,..., M} The set X is a set from which the patterns
x, (cases, inputs, instances) are taken and the 3, are called labels, targets or outputs. A
polychotomous learning algorithm uses L to construct a function C= C( -, L): X— Msuch
that we have to assign a new input x to C(x), one of the M classes.

Let K be a positive definite kernel. Several kernel functions satisfy Mercer's conditions so
that they are positive definite. Popular kernels are polynomial kernels of the form
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K(x,x)=(1+<x,x'>)%nd Gaussian radial basis functions of the form K(x,x")=exp
(= llx—x"11?/(26®))Denote by A -|a) a linear combination of the form
R-la)=ay+ 2 ak(-,s),
where S={s,...,s}CA={xy, ..., xpDefinite @,=K( - ,s)for /=1,..., Jand set g@y(x)=L
The set
{e; 1=0,1,....0

forms a (possibly over-complete) basis.
Define

7(mlx)= gbam,qo,(x), 1<m<M-—1
and 7(m|x)=0. Let a, denote the J+1 dimensional (column) vector of entries a,; for

0</<J and 1<m<M, and set au=0 Let a the (M—1)(J+ 1) dimensional vector of

entries of @y ..., ay-1A polychotomous model has the form

exp (7(mlx)) l<m<M
>, exp(7(4x))

p(mlx) = p(mlx, a)=

It can be seen that p(mlx) e (0,1) for 1 <m< M and %p(mlx)=l for any x=X .

Let K denote the JX J matrix with entries K(x,, x,-) for x;,, x, €S and define K to
be

e[ 5]

The multinomial log-likelihood based on L is defined by

£,(a)= gl[”(yn!xn)_ log( gln(dxn))]—% l;g:ll a’, K a, (1)

the (regularized) maximum likelihood estimator a is defined to be the minimizer of £ ;( @). It
can be noted from (1) that the constant basis ¢, is not regularized. The polychotomous
machine classifies a new input x into the class m which is defined by

m= arg max P(mlx; a).

To find @ we use the the Newton-Rapshon method. Let S;( @) denote the score at a
with entries 94 ;,( @)/da,; , and let I;( @) denote the information matrix with entries

—3*¢,(a)/damda »r. The maximum likelihood estimate 2 satisfies the likelihood
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equation S( 2) =0 The Newton-Raphson method for computing ais to iteratively determine

amerom a” according to the formula

a" = a" +1I( am)_lS,;( a’).

3. Sparse Stepwise Algorithm

Finding an optimal set Sc A is not an easy problem since an iterative algorithm such as

the Newton-Raphson algorithm is necessary to compute @ and the size of S is not known
beforehand. Hence, we use the following SSA algorithm which is a sparse greedy algorithm to

find near optimal solutions among the subsets of A

Sparse Stepwise Algorithm(SSA)
Reguire: Set of functions ¢,=K(-,s), s=A
Divide L into the training and the test data sets. Set A=A S= @and fit the

constant model.
reduce A
repeat addition with given A

Pick $= arg max ,e_sR(x)
S=sU{s)
Compute 21\,1 and test error rate
until ¢ ( a;) does not increaée much
until A<,
repeat deletion with optimal 2
Pick s= arg min ,;esWs))
S=S\{s}
Compute & r~ and test error rate
until S = @

Output: S= @ and a 1~ corresponding to the model having minimum test error rate

In the SSA algorithm, those points in S are referred to as import points, R(x) and
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W) denote the Rao and Wald statistics, see Rao (1973). The addition step of SSA and the
choice of the optimal A is essentially the same as that of Zhu and Hastie (2001), except that
we use the Newton-Raphson method to find a, .

Using Theorem A.80 of Herbrich (2001), one can compute the Rao statistic R(x,) and the
Wald statistic W(s,) by one inversion of a (M—1)*x(M—1) matrix rather than a full
inversion of a big (M—1) X (J+1) x(M—1) X (J+ Imatrix.

4. Numerical results
In this section, the performance of polychotomous machine is illustrated by simulation
method using simulated and real data sets.
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Figure 1. Posterior probability estimates using PM. Left panel shows the result for
N=64; right panel for N=128. Red solid lines denote the estimates of p(x) and red
dotted lines show the estimates of sign [ p(x) —1/2]. Blue solid and dotted lines show
the true p(x) and sign[p(x)—1/2]. Small tick marks show the location of the
predictor values, where the upper ones correspond to label 1 and the bottom ones show

the predictor values with label 0.

4.1 Posterior estimation

Standard SVM approach does not automatically produce a posterior probability estimate,
which is often useful and required in many practical classification applications. Several
methods have been proposed to modify the standard SVM to produce posterior probabilities.
Wahba (1999) and Platt (1999). Platt (1999) has shown that a sigmoid method for SVM
posterior estimation as ‘a postprocessing gives an accurate estimates. However, the PM can
give those estimate automatically without further postprocessing.
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To show the performance for posterior estimation, data points are generated as in Lin
(1999), where N equidistant points on the interval [0, 1] were taken as the predictor values.
Let the posterior probability function

px)=PY=1X=x)=1-]1—24
and Bernoulli random variables were generated with success probabilities p(x,). Though the
shape of p(x,) is simple, f(x)= log[p(x)/(1—p(x))] approaches to o as x—1/2, and to
—o0 as x converges to 0 and 1 so that the precise estimation of p(x) appears to be
difficult for the PM.

Figure 1 displays the PM estimates using N=64, 128data points and the Gaussian kernel
with 0=1 according to the SSA algorithm in Section 3. The import points were 0.02 and
0.09 for N=64, and 0.03, and 0.11 for N=128, which implies that similar locations were
necessary. The optimal A were 0.05 and 0.0025 for N=64 and N= 128, respectively. As the
sample size increases, the shape of the estimated function looks more similar to that of the
posterior probability function p(x). When N=64, the estimate of sign [p(x)—1/2] missed
the shape of the true one. Note that the function sign [p(x)—1/2] and its estimates were
scaled so that they did not interfere the other plots
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Figure 2. PM fit to the iris data. The left panel shows the result using Gaussian kernel
and the right used linear kernel. Green, red and blue points, respectively, denote the data
points from the class setosa, versicolor and versinica. Black lines display the decision
boundaries for three classes and black solid points are the import points. The shaded

regions denote classification regions.

4.2 Iris data
The iris data set is an well-known one in classification literature. It has three classes,
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setosa, versicolor and versinica; each class has 50 data points; the number of predictors is
four. For the convenience of display, the result is shown using the variables the last two
variables, petal.length and petal.width.

Figure 2 contains the result for the iris data. The left panel shows the result using the

linear kernel, for which the optimal A=1; the right panel displays the PM fit using the
Gaussian kernel with scale o=1]1 for which the optimal A= 0.0018 The numbers of import
vectors were three and one for those two fits. It may be concluded from the Figure 2 that

that linear decision boundary is enough for the iris data and only one import vector suffices
to classify the classes of iris.

Figure 3. PM fit to the mixture data. The black lines are the classification lines; the

blue lines are the Bayes rule boundaries; the yellow lines are the ﬁ(x) = 0.25 and 0.75.
The black points are the import points. The train error rates were 0.155 for both panels;
the test error rates were 0.22 for both cases.

4.3 Mixture of Gaussians

To show the performance of PM when the Bayes decision boundary is nonlinear, we
generated data as in Figure 2.3 of Hastie, Tibshirani and Friedman (2001).

Figure 3 displays the result for training sample size N=200 with 100 for each class. The
left panel shows the result without the stepwise deletion, for which case the number of import
points was 18; the result with stepwise deletion is presented in the right panel, for which
case 4 import points were deleted during the stepwise deletion. The optimal regularizing

parameter was A = 0.0183. Given the estimated decision boundaries, the test error rates based

on 1000 test data points were approximately 0.22 depending on the random seed. The minor
difference in the test error rate seems to come from the difference of the decision boundaries
in left part of figures. The appearance of the boundary around this area does not seem to
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affect the error rate much. Though we use a different algorithm, the overall shape of from the
SSA appears to be quite similar to that of Figure 3 of Zhu and Hastie (2001), except that the
import points of the PM is less,
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