• Title/Summary/Keyword: Kernel Size

Search Result 235, Processing Time 0.022 seconds

인공신경망 기반 저지연 피아노 채보 모델 (Reducing latency of neural automatic piano transcription models)

  • 이다솔;정다샘
    • 한국음향학회지
    • /
    • 제42권2호
    • /
    • pp.102-111
    • /
    • 2023
  • 자동 음악 채보는 주어진 오디오에서 음표 정보를 추출하는 태스크로, 이 연구에서는 피아노 음악의 자동음악 채보 모델에서 지연 시간을 줄이는 방법을 소개한다. 신경망 기반 채보 모델이 피아노 채보에도 적용되어 높은 정확도를 기록하였고 이를 이용한 실시간 구현도 소개된 바 있지만, 채보를 위한 지연 시간이 길어 인터랙티브 시나리오에서 활용하기에 한계가 있었다. 이 문제를 해결하기 위해 본 연구는 Fast Fourier Transformation(FFT)에서 윈도우 크기와 홉 크기를 줄이거나 합성곱 레이어의 커널 크기를 수정하고 시간 축에서 레이블을 이동하여 모델이 시작을 더 일찍 예측하도록 훈련하는 등 피아노 전사를 위한 신경망의 내재적 지연 시간을 줄이는 몇 가지 기술을 제안한다. 실험 결과, 이러한 접근 방식을 결합하면 높은 전사 정확도를 유지하면서 지연 시간을 줄일 수 있음을 알 수 있었다. 기존 모델은 160 ms의 지연 시간을 가지고 음표 F1 점수는 93.43 %였으나 제안한 방법을 적용하면 96 ms와 64 ms의 지연 시간 동안 각각 92.67 %와 90.51 %의 F1 점수를 달성할 수 있었다. 이러한 결과는 향후 피아노 교육을 위한 실시간 피드백 제공 등 다양한 인터랙티브 시나리오를 위한 자동 채보 모델에 활용될 수 있을 것이다.

벼 중만생 최고품질 복합내병성 직파 및 이앙 겸용 "호품" (A Medium-late Maturing New Rice Cultivar with High Grain Quality, Multi-disease Resistance, Adaptability to Direct Seeding and Transplanting Cultivation, "Hopum")

  • 고종철;김보경;남정권;백만기;하기용;김기영;손지영;이재길;정진일;고재권;신문식;김영두;모영준;김경훈;김정곤
    • 한국육종학회지
    • /
    • 제40권4호
    • /
    • pp.533-536
    • /
    • 2008
  • "호품" 품종은 국립식량과학원 벼맥류부에서 2006년도에 육성한 중만생 최고품질 복합내병성 직파 및 이앙재배 겸용 품종으로 주요특성과 수량성을 요약하면 다음과 같다. 1. 담수직파와 건답직파에서 8월 16일, 8월 20일로 주안벼 보다 4일 늦으며, 호남평야지 및 영남평야지 보통기보비 이앙재배에서는 평균 출수기가 8월 15일로 남평벼보다 1일정도 빠른 중만생종이다. 2. 간장은 68 cm로 남평벼 보다 11 cm 작고 주당수수와 수당립수는 남평벼와 같으며 등숙비율은 다소 떨어지나 현미천립중은 24.1 g으로 중립종에 속한다. 3. 불시출수와 위조현상은 나타나지 않았고 성숙기 하엽노화가 늦으며 수발아는 남평벼보다 높다. 유묘기 내냉성 및 임실율은 남평벼와 비슷하고 출수지연일수는 길었다. 4. 잎도열병은 중도저항성이며 흰잎마름병$(K_1{\sim}K_3)$, 줄무늬잎마름병에는 저항성이나 오갈병과 검은줄 오갈병에는 약하다. 5. 쌀알은 심복백이 거의 없으며 맑고 투명하다. 도정율은 남평보다 높으며 단백질 함량은 낮고 밥맛은 남평벼보다 좋다. 6. 담수직파 6개소에서 583 kg/10a으로 주안벼보다 15%, 건답직파 4개소에서 566 kg/10a으로 8% 증수되었으며 평야지 이앙재배에서는 600 kg/10a으로 8% 증수하였다.

고해상도 위성영상을 활용한 북한 6차 핵실험 이후 지표변화 관측 (Detection of Surface Changes by the 6th North Korea Nuclear Test Using High-resolution Satellite Imagery)

  • 이원진;선종선;정형섭;박순천;이덕기;오관영
    • 대한원격탐사학회지
    • /
    • 제34권6_4호
    • /
    • pp.1479-1488
    • /
    • 2018
  • 2017년 9월 3일 북한에서 발생한 인공지진 신호가 기상청 지진관측망에 관측되었다. 진앙은 풍계리 핵실험 지역으로 지금까지의 실험 중 가장 강력한 실험이었다. 직접적 접근이 제한되는 상황에서 6차 핵실험에 의한 주변 지표변화 연구를 위해 고해상도 위성 자료를 활용하였다. 우선, 지표변위 관측을 위해 ALOS-2 위성 자료를 활용하여 레이더 간섭기법(InSAR: SAR Interferometry)을 적용하였다. 하지만 6차 핵실험 주변 지역의 대규모 지표변위와 강한 진동으로 인해 낮은 긴밀도(coherence) 값을 지니며 레이더 간섭도가 생성되지 않았다. 이는 강한 진동으로 인한 표면의 변화와 레이더 간섭도가 생성 가능한 최대 지표변위 관측 범위보다 큰 변위가 발생했기 때문으로 추정되며 이러한 한계를 극복하기 위해 오프셋 트래킹(Offset Tracking) 방법을 활용하였다. 오프셋 트래킹 방법은 6차 핵실험 전 후 위성 영상레이더의 강도 영상(Intensity)에 대한 교차상관기법(Cross-Correlation)을 이용하는 것으로 상관관계 추정을 위해 사용된 윈도우 크기에 따라 결과가 달라지는 단점이 존재한다. 본 연구에서는 32부터 224까지 16단계로 윈도우 크기를 변화시키고 그 결과의 통계적 처리 후 지표변위를 생성하였다. 그 결과, 6차 핵실험 장소를 기준으로 만탑산 서쪽 지역에서 최대 3 m의 지표변위를 관측하였다. 또한, 고해상도 광학 영상을 활용하여 6차 핵실험에 의한 산사태 및 함몰지역으로 추정되는 지역을 확인하였다. 이러한 현상은 매우 강력한 지하 핵실험에 의한 것으로 판단되며 기존 음파 및 지진파를 이용한 핵실험 분석뿐만 아니라 고해상도 위성영상을 활용하여 비접근 지역에 대한 보조 분석 자료로 활용이 가능 할 것이다.

쌀 품질 고급화 및 고부가가치화를 위한 육종현황과 전망 (Current Status and Perspectives in Varietal Improvement of Rice Cultivars for High-Quality and Value-Added Products)

  • 최해춘
    • 한국작물학회지
    • /
    • 제47권
    • /
    • pp.15-32
    • /
    • 2002
  • 1980-'90년대에 쌀의 자급생산이 지속되고 생활수준 향상에 따른 양질미 수요가 점증되면서 자포니카 다수성 품종의 미질 개선에 힘을 크게 기울이게 되었고 식미향상을 위한 육종연구 와 효율적 평가 기술개발 연구에 박차를 가하게 되어 쌀의 이화학적 특성과 식미 및 밥 물리성간 상관과 식미의 객관적 평가방법 개발, 양식미 쌀 및 가공적성 특수미 개발 등 그 동안 많은 연구성과를 올리게 되었다. 1990년대에 밥맛이 매우 좋은 고품질 자포니카 품종과 대립, 심백미, 향미, 유색미 등 가공용 특수미 품종을 개발 보급하였고 식미와 용도에 대하여 식미검정계, 신속점도측정계 및 texture 분석계 등을 이용하여 검토하였다. 최근에는 아밀로스 함량이 9%로 찹쌀과 맵쌀의 중간 성질을 가진 중간찰 품종인 '백진주벼'와 배유가 보얀 멥쌀인 '설갱 벼'를 비롯하여 라이신 함량이 높은 '영안벼' 육성하여 쌀의 가공 이용성과 기능성을 한층 높혀 놓았다. 식미와 여러 가지 미질 특성간 관련성에 관한 연구 결과를 요약해 보면 다음과 같다. 쌀의 상온흡수율 및 최대흡수율은 K/Mg율 및 알칼리 붕괴도와 유의한 부의 상관성을 나타내었으며 가열흡수율이 높은 품종일수록 밥의 용적팽창률이 컸다. 수분함량이 낮은 경질인 쌀일수록 침지 20분 후의 상온흡수율과 최대흡수율이 더 높은 경향이었으며 이러한 흡수 특성은 쌀 단백질 함량이나 아밀로스 함량 및 식미와는 유의한 상관성이 없었다 취반 적정가수량은 품종에 따라 마른 쌀 무게의 1.45-l.61배의 변이를 나타내었고 평균은 1.52배였으며 알맞게 취사된 밥의 부피는 평균 쌀 부피의 2.63배가되었다. 쌀 형태, 알칼리붕괴도, 호응집성, 아밀로스 및 단백질 함량은 거의 비슷하지만 식미에 차이가 있는 자포니카 품종들을 사용하여 식미와 관련된 쌀의 이화학적 특성을 검토한 결과, 밥의 윤기와 식미 총평은 생산 연도에 따라 호화점도 특성 중 최고점도, 최저점도 및 응집점도와 밀접한 관계를 나타내었다. 밥맛이 가장 좋은 일품 벼는 쌀의 외층에 아밀로스 함량 분포가 낮고 쌀을 열탕에 담근 20분간 우러난 용출액의 요드 정색도가 낮고 증가정도도 완만하였다. 일품 벼는 밥맛이 떨어지는 동해 벼에 비해 밥알 횡단면의 주사형 전자현미경 사진에서 밥알 외층의 호화전분의 그 물망이 매우 치밀하고 속층의 전분립의 호화정도가 양호하였다. 식미총평은 식미관련 이화학적 특성과의 관계를 이용한 중회귀식에 의해 매우 높은 결정계수로 추정이 가능하였다. 밥노화의 품종간 차이는 α-amylase-iodine 법으로 비교할 수 있었는데 노화정도가 적었던 품종은 일품벼, 추청벼, 사사니시끼, 진부벼 및 고시히까리였다. 통일형 품종인 태백벼와 자포니카 품종 중 섬진벼가 비교적 밥노화가 빨랐다 일반적으로 밥맛이 좋은 품종이 밥의 노화정도가 느렸으며 찬밥의 탄력성이 큰 경향이었다. 또한 밥노화가 느렸던 품종은 최저점도가 높았고 최종점도가 낮았다 찬밥의 탄력성은 쌀의 마그네슘함량과 밥의 용적팽창률과 밀접한 관계를 나타내었다. 식은밥의 더운밥 대비 경도 변화율은 취반용출액의 고형물량과 취반용적 팽창률과 부의 상관을 나타내었다. 식미관련 주요 이화학적 특성은 밥의 노화와도 직접 간접으로 상관이 있는 것으로 평가되었다. 쌀의 여러 가지 식품 가공적성과 관련된 형태 및 이화학적 특성은 가공식품 종류에 따라 매우 다르다. 쌀 튀김성은 호응집성이 연질이거나 아밀로스 함량이 낮을수록 양호하며 지질함량이나 단백질 함량이 높으면 좋지 않은 경향이다. 심복백정도가 심할수록 튀김현미 정립률이 떨어지며 현미 강도가 높을수록 튀김률은 높은 경향이었다 쌀국수는 밀가루와 50% 혼합시에 쌀의 칼륨 및 마그네슘 함량이 높은 품종일수록 제면 총평이 낮은 경향이었고 제면이 양호한 것이 국수물의 용출고형 물량이 적은 경향이었다. 쌀빵 가공적성은 품종에 따라서 현미와 백미간에 현저한 차이를 나타내는 것이 있는데 현미에서 반죽의 부피 증가율이 큰 쌀일수록 푹신한 감이 있는 쌀방 제조가 가능하였으며 백미에서 단백질 함량이 높은 품종일수록 쌀빵이 더욱 촉촉한 느낌이 있는 경향이었다. 아밀로스 함량이 높고 호응집성이 경질인 쌀일수록 쌀빵의 탄력성이 더 높은 경향이었다. 쌀의 발효 및 양조적성은 심복백이 심한 쌀이나 새로운 돌연변이인 뽀얀 멥쌀이 홍국균이나 홍국균의 균사활착 밀도가 높고 당화 효소 역가도 높은 경향이었으며 쌀알이 대립이면서 단백질 함량이 낮은 쪽이 양조에 유리한 것으로 알려져 있다. 찰벼 품종도 여러 가지 이화학적 특성과 전분구조 특성의 차이에 따라 9개의 품종군으로 나누어 볼 수 있을 만큼 품종적 변이가 크며 이들 이화학적 및 구조적 특성간에 상호 밀접한 연관성을 나타내었으며 유과·인절미·식혜ㆍ미숫가루 등에 상당한 가공적성의 차이를 보였다. WTO 체제 출범이후 생산비와 가격 면에서 경쟁력이 약한 우리 쌀이 살아남기 위해서는 품질의 고급화와 쌀 가공식품의 다양화 및 고기능성 개발을 추구할 수밖에 없다. 따라서 이와 같은 노력은 벼 품종개발만으로 소기의 성과를 올리기 어렵고 쌀 식품의 고급화 및 다양화를 위한 여러 분야의 긴밀한 연구협력이 수반되지 않으면 안 된다.

지능형 전망모형을 결합한 로보어드바이저 알고리즘 (Robo-Advisor Algorithm with Intelligent View Model)

  • 김선웅
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.39-55
    • /
    • 2019
  • 최근 은행과 증권회사를 중심으로 다양한 로보어드바이저 금융상품들이 출시되고 있다. 로보어드바이저는 사람 대신 컴퓨터가 포트폴리오 자산배분에 대한 투자 결정을 실행하기 때문에 다양한 자산배분 알고리즘이 활용되고 있다. 본 연구에서는 대표적 로보어드바이저 알고리즘인 블랙리터만모형의 강점을 살리면서 객관적 투자자 전망을 도출할 수 있는 지능형 전망모형을 제안하고 이를 내재균형수익률과 결합하여 최종 포트폴리오를 도출하는 로보어드바이저 자산배분 알고리즘을 새로이 제안하며, 실제 주가자료를 이용한 실증분석 결과를 통해 전문가의 주관적 전망을 대신할 수 있는 지능형 전망모형의 실무적 적용 가능성을 보여주고자 한다. 그동안 주가 예측에서 우수한 성과를 보여주었던 기계학습 방법 중 SVM 모형을 이용하여 각 자산별 기대수익률에 대한 예측과 예측 확률을 도출하고 이를 각각 기대수익률에 대한 투자자 전망과 전망에 대한 신뢰도 수준의 입력변수로 활용하는 지능형 전망모형을 제안하였다. 시장포트폴리오로부터 도출된 내재균형수익률과 지능형 전망모형의 기대수익률, 확률을 결합하여 최종적인 블랙리터만모형의 최적포트폴리오를 도출하였다. 주가자료는 2008년부터 2018년까지의 132개월 동안의 8개의 KOSPI 200 섹터지수 월별 자료를 분석하였다. 블랙리터만모형으로 도출된 최적포트폴리오의 결과가 기존의 평균분산모형이나 리스크패리티모형 등과 비교하여 우수한 성과를 보여주었다. 구체적으로 2008년부터 2015년까지의 In-Sample 자료에서 최적화된 블랙리터만모형을 2016년부터 2018년까지의 Out-Of-Sample 기간에 적용한 실증분석 결과에서 다른 알고리즘보다 수익과 위험 모두에서 좋은 성과를 기록하였다. 총수익률은 6.4%로 최고 수준이며, 위험지표인 MDD는 20.8%로 최저수준을 기록하였다. 수익과 위험을 동시에 고려하여 투자 성과를 측정하는 샤프비율 역시 0.17로 가장 좋은 결과를 보여주었다. 증권계의 애널리스트 전문가들이 발표하는 투자자 전망자료의 신뢰성이 낮은 상태에서, 본 연구에서 제안된 지능형 전망모형은 현재 빠른 속도로 확장되고 있는 로보어드바이저 관련 금융상품을 개발하고 운용하는 실무적 관점에서 본 연구는 의의가 있다고 판단된다.