• 제목/요약/키워드: Kernel Methods

검색결과 487건 처리시간 0.024초

Elongated Radial Basis Function for Nonlinear Representation of Face Data

  • 김상기;유선진;이상윤
    • 한국통신학회논문지
    • /
    • 제36권7C호
    • /
    • pp.428-434
    • /
    • 2011
  • Recently, subspace analysis has raised its performance to a higher level through the adoption of kernel-based nonlinearity. Especially, the radial basis function, based on its nonparametric nature, has shown promising results in face recognition. However, due to the endemic small sample size problem of face data, the conventional kernel-based feature extraction methods have difficulty in data representation. In this paper, we introduce a novel variant of the RBF kernel to alleviate this problem. By adopting the concept of the nearest feature line classifier, we show both effectiveness and generalizability of the proposed method, particularly regarding the small sample size issue.

A LARGE-UPDATE INTERIOR POINT ALGORITHM FOR $P_*(\kappa)$ LCP BASED ON A NEW KERNEL FUNCTION

  • Cho, You-Young;Cho, Gyeong-Mi
    • East Asian mathematical journal
    • /
    • 제26권1호
    • /
    • pp.9-23
    • /
    • 2010
  • In this paper we generalize large-update primal-dual interior point methods for linear optimization problems in [2] to the $P_*(\kappa)$ linear complementarity problems based on a new kernel function which includes the kernel function in [2] as a special case. The kernel function is neither self-regular nor eligible. Furthermore, we improve the complexity result in [2] from $O(\sqrt[]{n}(\log\;n)^2\;\log\;\frac{n{\mu}o}{\epsilon})$ to $O\sqrt[]{n}(\log\;n)\log(\log\;n)\log\;\frac{m{\mu}o}{\epsilon}$.

복합 커널을 사용한 한국어 종속절의 의존관계 분석 (Analyzing dependency of Korean subordinate clauses using a composit kernel)

  • 김상수;박성배;박세영;이상조
    • 인지과학
    • /
    • 제19권1호
    • /
    • pp.1-15
    • /
    • 2008
  • 한국어에서 절들의 의존관계를 밝히는 작업은 구문 분석 작업에서 가장 어려운 작업들 중에 하나로 인식되고 있다. 절의 의존관계를 파악하는 일은 표면적으로 나타나는 정보만을 가지고 처리할 수 없고, 의미정보와 같은 추가적인 정보가 필요할 것으로 판단하고 처리해 왔다. 본 논문에서는 추가적인 정보를 사용하지 알고, 문장에서 얻을 수 있는 표면적인 정보만을 사용하여 절들 간의 의존관계를 파악하는 방법을 제안한다. 문장에서 얻을 수 있는 표면적인 정보는 문장의 구문 정보(tree structure information)와 어휘 및 거리 정보를 가지고 있는 정적인 정보(static information)로 나누어 볼 수 있다. 본 논문에서는 절들 간의 의존 관계 파악을 위하여 구문 정보와 정적 정보를 다루는 하나 이상의 커널의 결합해서 사용하는 복합 커널(composite kernel)을 제안하고, 이 커널에 맞는 다양한 인스턴스 공간의 설정을 제안한다. 실험은 최적화된 인스턴스 공간을 절들 간의 의존관계 파악 및 문장 수준에서 성능을 검정하였다. 관계 인스턴스 공간은 절들 간의 연결 및 하부절의 표현 유무로 나누었고, 결정된 인스턴스 공간에서 복합커널을 사용한 방법이 좋은 성능을 발휘함을 보였다.

  • PDF

Kernel Ridge Regression with Randomly Right Censored Data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제15권2호
    • /
    • pp.205-211
    • /
    • 2008
  • This paper deals with the estimations of kernel ridge regression when the responses are subject to randomly right censoring. The iterative reweighted least squares(IRWLS) procedure is employed to treat censored observations. The hyperparameters of model which affect the performance of the proposed procedure are selected by a generalized cross validation(GCV) function. Experimental results are then presented which indicate the performance of the proposed procedure.

Nonparametric Discontinuity Point Estimation in Density or Density Derivatives

  • Huh, Jib
    • Journal of the Korean Statistical Society
    • /
    • 제31권2호
    • /
    • pp.261-276
    • /
    • 2002
  • Probability density or its derivatives may have a discontinuity/change point at an unknown location. We propose a method of estimating the location and the jump size of the discontinuity point based on kernel type density or density derivatives estimators with one-sided equivalent kernels. The rates of convergence of the proposed estimators are derived, and the finite-sample performances of the methods are illustrated by simulated examples.

Evaluation of the Efficiency of an Inverse Exponential Kernel Estimator for Spherical Data

  • Park, Hyun Suk
    • Communications for Statistical Applications and Methods
    • /
    • 제20권1호
    • /
    • pp.77-84
    • /
    • 2013
  • This paper deals with the relative efficiency of two kernel estimators $\hat{f}_n$ and $\hat{g}_n$ by using spherical data, as proposed by Park (2012), and Bai et al. (1988), respectively. For this, we suggest the computing flows for the relative efficiency on the 2-dimensional unit sphere. An evaluation procedure between two estimators (given the same kernels) is also illustrated through the observed data on normals to the orbital planes of long-period comets.

Optimal Designs for Multivariate Nonparametric Kernel Regression with Binary Data

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • 제2권2호
    • /
    • pp.243-248
    • /
    • 1995
  • The problem of optimal design for a nonparametric regression with binary data is considered. The aim of the statistical analysis is the estimation of a quantal response surface in two dimensions. Bias, variance and IMSE of kernel estimates are derived. The optimal design density with respect to asymptotic IMSE is constructed.

  • PDF

멀티모드 커널 가중치 기반 객체 추적 (Multi-mode Kernel Weight-based Object Tracking)

  • 김은섭;김용구;최유주
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제21권4호
    • /
    • pp.11-17
    • /
    • 2015
  • 최근, 감시시스템, 게임, 영화등 다양한 분야에서 영상을 이용한 실시간 객체 추적의 필요성이 높아짐에 따라, 커널기반 mean-shift 추적 기법에 대한 관심이 높아지고 있다. 커널 기반 mean-shift 객체 추적에 있어서 주요한 몇 가지 문제점들 중, 첫번째로 추적 목표 객체에 대한 부분 가림 흑은 전체 가림 상황에서의 객체 추적의 문제를 들 수 있다. 본 논문에서는 멀티모드 지역적 커널 가중치를 적용함드로써 부분 가림 상황에서도 안정적드로 객체를 추적할 수 있는 실시간 mean-shift 추적 기법을 제안한다. 제안기법에서는 단일 커널을 사용하는 대신 여러 개의 서브 커널들로 구성된 커널을 사용하고, 각 서브 커널의 위치에 따른 지역적 커널 가중치를 적용한다. 기존의 멀티모드 커널 기반의 방법과 비교한 실힘을 통하여 본 제안 방법이 보다 안정적드로 객체를 추적할 수 있음을 보였다.

An improved kernel principal component analysis based on sparse representation for face recognition

  • Huang, Wei;Wang, Xiaohui;Zhu, Yinghui;Zheng, Gengzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2709-2729
    • /
    • 2016
  • Representation based classification, kernel method and sparse representation have received much attention in the field of face recognition. In this paper, we proposed an improved kernel principal component analysis method based on sparse representation to improve the accuracy and robustness for face recognition. First, the distances between the test sample and all training samples in kernel space are estimated based on collaborative representation. Second, S training samples with the smallest distances are selected, and Kernel Principal Component Analysis (KPCA) is used to extract the features that are exploited for classification. The proposed method implements the sparse representation under ℓ2 regularization and performs feature extraction twice to improve the robustness. Also, we investigate the relationship between the accuracy and the sparseness coefficient, the relationship between the accuracy and the dimensionality respectively. The comparative experiments are conducted on the ORL, the GT and the UMIST face database. The experimental results show that the proposed method is more effective and robust than several state-of-the-art methods including Sparse Representation based Classification (SRC), Collaborative Representation based Classification (CRC), KCRC and Two Phase Test samples Sparse Representation (TPTSR).

Survey on Nucleotide Encoding Techniques and SVM Kernel Design for Human Splice Site Prediction

  • Bari, A.T.M. Golam;Reaz, Mst. Rokeya;Choi, Ho-Jin;Jeong, Byeong-Soo
    • Interdisciplinary Bio Central
    • /
    • 제4권4호
    • /
    • pp.14.1-14.6
    • /
    • 2012
  • Splice site prediction in DNA sequence is a basic search problem for finding exon/intron and intron/exon boundaries. Removing introns and then joining the exons together forms the mRNA sequence. These sequences are the input of the translation process. It is a necessary step in the central dogma of molecular biology. The main task of splice site prediction is to find out the exact GT and AG ended sequences. Then it identifies the true and false GT and AG ended sequences among those candidate sequences. In this paper, we survey research works on splice site prediction based on support vector machine (SVM). The basic difference between these research works is nucleotide encoding technique and SVM kernel selection. Some methods encode the DNA sequence in a sparse way whereas others encode in a probabilistic manner. The encoded sequences serve as input of SVM. The task of SVM is to classify them using its learning model. The accuracy of classification largely depends on the proper kernel selection for sequence data as well as a selection of kernel parameter. We observe each encoding technique and classify them according to their similarity. Then we discuss about kernel and their parameter selection. Our survey paper provides a basic understanding of encoding approaches and proper kernel selection of SVM for splice site prediction.