Recently, subspace analysis has raised its performance to a higher level through the adoption of kernel-based nonlinearity. Especially, the radial basis function, based on its nonparametric nature, has shown promising results in face recognition. However, due to the endemic small sample size problem of face data, the conventional kernel-based feature extraction methods have difficulty in data representation. In this paper, we introduce a novel variant of the RBF kernel to alleviate this problem. By adopting the concept of the nearest feature line classifier, we show both effectiveness and generalizability of the proposed method, particularly regarding the small sample size issue.
In this paper we generalize large-update primal-dual interior point methods for linear optimization problems in [2] to the $P_*(\kappa)$ linear complementarity problems based on a new kernel function which includes the kernel function in [2] as a special case. The kernel function is neither self-regular nor eligible. Furthermore, we improve the complexity result in [2] from $O(\sqrt[]{n}(\log\;n)^2\;\log\;\frac{n{\mu}o}{\epsilon})$ to $O\sqrt[]{n}(\log\;n)\log(\log\;n)\log\;\frac{m{\mu}o}{\epsilon}$.
한국어에서 절들의 의존관계를 밝히는 작업은 구문 분석 작업에서 가장 어려운 작업들 중에 하나로 인식되고 있다. 절의 의존관계를 파악하는 일은 표면적으로 나타나는 정보만을 가지고 처리할 수 없고, 의미정보와 같은 추가적인 정보가 필요할 것으로 판단하고 처리해 왔다. 본 논문에서는 추가적인 정보를 사용하지 알고, 문장에서 얻을 수 있는 표면적인 정보만을 사용하여 절들 간의 의존관계를 파악하는 방법을 제안한다. 문장에서 얻을 수 있는 표면적인 정보는 문장의 구문 정보(tree structure information)와 어휘 및 거리 정보를 가지고 있는 정적인 정보(static information)로 나누어 볼 수 있다. 본 논문에서는 절들 간의 의존 관계 파악을 위하여 구문 정보와 정적 정보를 다루는 하나 이상의 커널의 결합해서 사용하는 복합 커널(composite kernel)을 제안하고, 이 커널에 맞는 다양한 인스턴스 공간의 설정을 제안한다. 실험은 최적화된 인스턴스 공간을 절들 간의 의존관계 파악 및 문장 수준에서 성능을 검정하였다. 관계 인스턴스 공간은 절들 간의 연결 및 하부절의 표현 유무로 나누었고, 결정된 인스턴스 공간에서 복합커널을 사용한 방법이 좋은 성능을 발휘함을 보였다.
Communications for Statistical Applications and Methods
/
제15권2호
/
pp.205-211
/
2008
This paper deals with the estimations of kernel ridge regression when the responses are subject to randomly right censoring. The iterative reweighted least squares(IRWLS) procedure is employed to treat censored observations. The hyperparameters of model which affect the performance of the proposed procedure are selected by a generalized cross validation(GCV) function. Experimental results are then presented which indicate the performance of the proposed procedure.
Probability density or its derivatives may have a discontinuity/change point at an unknown location. We propose a method of estimating the location and the jump size of the discontinuity point based on kernel type density or density derivatives estimators with one-sided equivalent kernels. The rates of convergence of the proposed estimators are derived, and the finite-sample performances of the methods are illustrated by simulated examples.
Communications for Statistical Applications and Methods
/
제20권1호
/
pp.77-84
/
2013
This paper deals with the relative efficiency of two kernel estimators $\hat{f}_n$ and $\hat{g}_n$ by using spherical data, as proposed by Park (2012), and Bai et al. (1988), respectively. For this, we suggest the computing flows for the relative efficiency on the 2-dimensional unit sphere. An evaluation procedure between two estimators (given the same kernels) is also illustrated through the observed data on normals to the orbital planes of long-period comets.
Communications for Statistical Applications and Methods
/
제2권2호
/
pp.243-248
/
1995
The problem of optimal design for a nonparametric regression with binary data is considered. The aim of the statistical analysis is the estimation of a quantal response surface in two dimensions. Bias, variance and IMSE of kernel estimates are derived. The optimal design density with respect to asymptotic IMSE is constructed.
최근, 감시시스템, 게임, 영화등 다양한 분야에서 영상을 이용한 실시간 객체 추적의 필요성이 높아짐에 따라, 커널기반 mean-shift 추적 기법에 대한 관심이 높아지고 있다. 커널 기반 mean-shift 객체 추적에 있어서 주요한 몇 가지 문제점들 중, 첫번째로 추적 목표 객체에 대한 부분 가림 흑은 전체 가림 상황에서의 객체 추적의 문제를 들 수 있다. 본 논문에서는 멀티모드 지역적 커널 가중치를 적용함드로써 부분 가림 상황에서도 안정적드로 객체를 추적할 수 있는 실시간 mean-shift 추적 기법을 제안한다. 제안기법에서는 단일 커널을 사용하는 대신 여러 개의 서브 커널들로 구성된 커널을 사용하고, 각 서브 커널의 위치에 따른 지역적 커널 가중치를 적용한다. 기존의 멀티모드 커널 기반의 방법과 비교한 실힘을 통하여 본 제안 방법이 보다 안정적드로 객체를 추적할 수 있음을 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권6호
/
pp.2709-2729
/
2016
Representation based classification, kernel method and sparse representation have received much attention in the field of face recognition. In this paper, we proposed an improved kernel principal component analysis method based on sparse representation to improve the accuracy and robustness for face recognition. First, the distances between the test sample and all training samples in kernel space are estimated based on collaborative representation. Second, S training samples with the smallest distances are selected, and Kernel Principal Component Analysis (KPCA) is used to extract the features that are exploited for classification. The proposed method implements the sparse representation under ℓ2 regularization and performs feature extraction twice to improve the robustness. Also, we investigate the relationship between the accuracy and the sparseness coefficient, the relationship between the accuracy and the dimensionality respectively. The comparative experiments are conducted on the ORL, the GT and the UMIST face database. The experimental results show that the proposed method is more effective and robust than several state-of-the-art methods including Sparse Representation based Classification (SRC), Collaborative Representation based Classification (CRC), KCRC and Two Phase Test samples Sparse Representation (TPTSR).
Splice site prediction in DNA sequence is a basic search problem for finding exon/intron and intron/exon boundaries. Removing introns and then joining the exons together forms the mRNA sequence. These sequences are the input of the translation process. It is a necessary step in the central dogma of molecular biology. The main task of splice site prediction is to find out the exact GT and AG ended sequences. Then it identifies the true and false GT and AG ended sequences among those candidate sequences. In this paper, we survey research works on splice site prediction based on support vector machine (SVM). The basic difference between these research works is nucleotide encoding technique and SVM kernel selection. Some methods encode the DNA sequence in a sparse way whereas others encode in a probabilistic manner. The encoded sequences serve as input of SVM. The task of SVM is to classify them using its learning model. The accuracy of classification largely depends on the proper kernel selection for sequence data as well as a selection of kernel parameter. We observe each encoding technique and classify them according to their similarity. Then we discuss about kernel and their parameter selection. Our survey paper provides a basic understanding of encoding approaches and proper kernel selection of SVM for splice site prediction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.