• Title/Summary/Keyword: Kernel Method

Search Result 998, Processing Time 0.022 seconds

Music/Voice Separation Based on Kernel Back-Fitting Using Weighted β-Order MMSE Estimation

  • Kim, Hyoung-Gook;Kim, Jin Young
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.510-517
    • /
    • 2016
  • Recent developments in the field of separation of mixed signals into music/voice components have attracted the attention of many researchers. Recently, iterative kernel back-fitting, also known as kernel additive modeling, was proposed to achieve good results for music/voice separation. To obtain minimum mean square error (MMSE) estimates of short-time Fourier transforms of sources, generalized spatial Wiener filtering (GW) is typically used. In this paper, we propose an advanced music/voice separation method that utilizes a generalized weighted ${\beta}$-order MMSE estimation (WbE) based on iterative kernel back-fitting (KBF). In the proposed method, WbE is used for the step of mixed music signal separation, while KBF permits kernel spectrogram model fitting at each iteration. Experimental results show that the proposed method achieves better separation performance than GW and existing Bayesian estimators.

Improvement in Supervector Linear Kernel SVM for Speaker Identification Using Feature Enhancement and Training Length Adjustment (특징 강화 기법과 학습 데이터 길이 조절에 의한 Supervector Linear Kernel SVM 화자식별 개선)

  • So, Byung-Min;Kim, Kyung-Wha;Kim, Min-Seok;Yang, Il-Ho;Kim, Myung-Jae;Yu, Ha-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.330-336
    • /
    • 2011
  • In this paper, we propose a new method to improve the performance of supervector linear kernel SVM (Support Vector Machine) for speaker identification. This method is based on splitting one training datum into several pieces of utterances. We use four different databases for evaluating performance and use PCA (Principal Component Analysis), GKPCA (Greedy Kernel PCA) and KMDA (Kernel Multimodal Discriminant Analysis) for feature enhancement. As a result, the proposed method shows improved performance for speaker identification using supervector linear kernel SVM.

On the Support Vector Machine with the kernel of the q-normal distribution

  • Joguchi, Hirofumi;Tanaka, Masaru
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.983-986
    • /
    • 2002
  • Support Vector Machine (SVM) is one of the methods of pattern recognition that separate input data using hyperplane. This method has high capability of pattern recognition by using the technique, which says kernel trick, and the Radial basis function (RBF) kernel is usually used as a kernel function in kernel trick. In this paper we propose using the q-normal distribution to the kernel function, instead of conventional RBF, and compare two types of the kernel function.

  • PDF

A Nature-inspired Multiple Kernel Extreme Learning Machine Model for Intrusion Detection

  • Shen, Yanping;Zheng, Kangfeng;Wu, Chunhua;Yang, Yixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.702-723
    • /
    • 2020
  • The application of machine learning (ML) in intrusion detection has attracted much attention with the rapid growth of information security threat. As an efficient multi-label classifier, kernel extreme learning machine (KELM) has been gradually used in intrusion detection system. However, the performance of KELM heavily relies on the kernel selection. In this paper, a novel multiple kernel extreme learning machine (MKELM) model combining the ReliefF with nature-inspired methods is proposed for intrusion detection. The MKELM is designed to estimate whether the attack is carried out and the ReliefF is used as a preprocessor of MKELM to select appropriate features. In addition, the nature-inspired methods whose fitness functions are defined based on the kernel alignment are employed to build the optimal composite kernel in the MKELM. The KDD99, NSL and Kyoto datasets are used to evaluate the performance of the model. The experimental results indicate that the optimal composite kernel function can be determined by using any heuristic optimization method, including PSO, GA, GWO, BA and DE. Since the filter-based feature selection method is combined with the multiple kernel learning approach independent of the classifier, the proposed model can have a good performance while saving a lot of training time.

A study on bandwith selection based on ASE for nonparametric density estimators

  • Kim, Tae-Yoon
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.3
    • /
    • pp.307-313
    • /
    • 2000
  • Suppose we have a set of data X1, ···, Xn and employ kernel density estimator to estimate the marginal density of X. in this article bandwith selection problem for kernel density estimator is examined closely. In particular the Kullback-Leibler method (a bandwith selection methods based on average square error (ASE)) is considered.

  • PDF

Determining Kernel Function of Apparent Earth Resistivity Using Linearization (선형화를 이용한 대지저항률의 커널함수 결정)

  • Kang, Min-Jae;Boo, Chang-Jin;Lee, Jung-Hoon;Kim, Ho-Chan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.454-459
    • /
    • 2012
  • A kernel function of apparent earth resistivity can be estimated using the apparent earth resistivity measured with Wenner's 4 point method. It becomes to solve a nonlinear system to estimate the kernel function of apparent earth resistivity. However it is not simple to get solution of nonlinear system with many unknown variables. This paper suggests the method of estimating kernel function by linearizing this nonlinear system. Finally, various examples of earth structure have been simulated to evaluate the proposed method in this paper.

A Derivation of a Hydrograph by Using Smoothed Dimensionless Unit Kernel Function (평활화된 무차원 단위핵함수를 이용한 단위도의 유도)

  • Seong, Kee-Won
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.6
    • /
    • pp.559-564
    • /
    • 2008
  • A practical method is derived for determining the unit hydrograph and S-curve from complex storm events by using a smoothed unit kernel approach. The using a unit kernel yields more convenient way of constructing a unit hydrograph and its S-curve than a conventional method. However, with use of real data, the unit kernel oscillates and is unstable so that a unit hydrograph and S-curve cannot easily obtained. The use of non-parametric ridge regression with a Laplacian matrix is suggested for deriving an event averaged unit kernel which reduces the computational efforts when dealing with the Nash instantaneous unit hydrograph as a basis of the kernel. A method changing the unit hydrograph duration is also presented. The procedure shown in this work will play an efficient role when any unit hydrograph works is involved.

On Estimating the Hazard Rate for Samples from Weighted Distributions

  • Ahmad, Ibrahim A.
    • International Journal of Reliability and Applications
    • /
    • v.1 no.2
    • /
    • pp.133-143
    • /
    • 2000
  • Data from weighted distributions appear, among other situations, when some of the data are missing or are damaged, a case that is important in reliability and life testing. The kernel method for hazard rate estimation is discussed for these data where the basic large sample properties are given. As a by product, the basic properties of the kernel estimate of the distribution function for data from weighted distribution are presented.

  • PDF

Mixed Effects Kernel Binomial Regression

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1327-1334
    • /
    • 2008
  • Mixed effect binomial regression models are widely used for analysis of correlated count data in which the response is the result of a series of one of two possible disjoint outcomes. In this paper, we consider kernel extensions with nonparametric fixed effects and parametric random effects. The estimation is through the penalized likelihood method based on kernel trick, and our focus is on the efficient computation and the effective hyperparameter selection. For the selection of hyperparameters, cross-validation techniques are employed. Examples illustrating usage and features of the proposed method are provided.

  • PDF

ON THE NUMERICAL SOLUTIONS OF INTEGRAL EQUATION OF MIXED TYPE

  • Abdou, Mohamed A.;Mohamed, Khamis I.
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.165-182
    • /
    • 2003
  • Toeplitz matrix method and the product Nystrom method are described for mixed Fredholm-Volterra singular integral equation of the second kind with Carleman Kernel and logarithmic kernel. The results are compared with the exact solution of the integral equation. The error of each method is calculated.