• 제목/요약/키워드: Kernel Concept

검색결과 64건 처리시간 0.027초

FCM for the Multi-Scale Problems (고속 최소자승 점별계산법을 이용한 멀티 스케일 문제의 해석)

  • 김도완;김용식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.599-603
    • /
    • 2002
  • We propose a new meshfree method to be called the fast moving least square reproducing kernel collocation method(FCM). This methodology is composed of the fast moving least square reproducing kernel(FMLSRK) approximation and the point collocation scheme. Using point collocation makes the meshfree method really come true. In this paper, FCM Is shown to be a good method at least to calculate the numerical solutions governed by second order elliptic partial differential equations with geometric singularity or geometric multi-scales. To treat such problems, we use the concept of variable dilation parameter.

  • PDF

Real-Time Prediction for Product Surface Roughness by Support Vector Regression (서포트벡터 회귀를 이용한 실시간 제품표면거칠기 예측)

  • Choi, Sujin;Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • 제44권3호
    • /
    • pp.117-124
    • /
    • 2021
  • The development of IOT technology and artificial intelligence technology is promoting the smartization of manufacturing system. In this study, data extracted from acceleration sensor and current sensor were obtained through experiments in the cutting process of SKD11, which is widely used as a material for special mold steel, and the amount of tool wear and product surface roughness were measured. SVR (Support Vector Regression) is applied to predict the roughness of the product surface in real time using the obtained data. SVR, a machine learning technique, is widely used for linear and non-linear prediction using the concept of kernel. In particular, by applying GSVQR (Generalized Support Vector Quantile Regression), overestimation, underestimation, and neutral estimation of product surface roughness are performed and compared. Furthermore, surface roughness is predicted using the linear kernel and the RBF kernel. In terms of accuracy, the results of the RBF kernel are better than those of the linear kernel. Since it is difficult to predict the amount of tool wear in real time, the product surface roughness is predicted with acceleration and current data excluding the amount of tool wear. In terms of accuracy, the results of excluding the amount of tool wear were not significantly different from those including the amount of tool wear.

A study on Memory Analysis Bypass Technique and Kernel Tampering Detection (메모리 분석 우회 기법과 커널 변조 탐지 연구)

  • Lee, Haneol;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • 제31권4호
    • /
    • pp.661-674
    • /
    • 2021
  • Malware, such as a rootkit that modifies the kernel, can adversely affect the analyst's judgment, making the analysis difficult or impossible if a mechanism to evade memory analysis is added. Therefore, we plan to preemptively respond to malware such as rootkits that bypass detection through advanced kernel modulation in the future. To this end, the main structure used in the Windows kernel was analyzed from the attacker's point of view, and a method capable of modulating the kernel object was applied to modulate the memory dump file. The result of tampering is confirmed through experimentation that it cannot be detected by memory analysis tool widely used worldwide. Then, from the analyst's point of view, using the concept of tamper resistance, it is made in the form of software that can detect tampering and shows that it is possible to detect areas that are not detected by existing memory analysis tools. Through this study, it is judged that it is meaningful in that it preemptively attempted to modulate the kernel area and derived insights to enable precise analysis. However, there is a limitation in that the necessary detection rules need to be manually created in software implementation for precise analysis.

A Non-linear Variant of Global Clustering Using Kernel Methods (커널을 이용한 전역 클러스터링의 비선형화)

  • Heo, Gyeong-Yong;Kim, Seong-Hoon;Woo, Young-Woon
    • Journal of the Korea Society of Computer and Information
    • /
    • 제15권4호
    • /
    • pp.11-18
    • /
    • 2010
  • Fuzzy c-means (FCM) is a simple but efficient clustering algorithm using the concept of a fuzzy set that has been proved to be useful in many areas. There are, however, several well known problems with FCM, such as sensitivity to initialization, sensitivity to outliers, and limitation to convex clusters. In this paper, global fuzzy c-means (G-FCM) and kernel fuzzy c-means (K-FCM) are combined to form a non-linear variant of G-FCM, called kernel global fuzzy c-means (KG-FCM). G-FCM is a variant of FCM that uses an incremental seed selection method and is effective in alleviating sensitivity to initialization. There are several approaches to reduce the influence of noise and accommodate non-convex clusters, and K-FCM is one of them. K-FCM is used in this paper because it can easily be extended with different kernels. By combining G-FCM and K-FCM, KG-FCM can resolve the shortcomings mentioned above. The usefulness of the proposed method is demonstrated by experiments using artificial and real world data sets.

A Concept and Operational Assumptions of OS Security Enhancement System (운영체제보안시스템의 개념 및 운영 가정사항)

  • Tai-hoon Kim;Sang-ho Kim;Jae-sung Kim
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 한국시뮬레이션학회 2003년도 추계학술대회 및 정기총회
    • /
    • pp.119-125
    • /
    • 2003
  • Trusted operating systems (OS) provide the basic security mechanisms and services that allow a computer system to protect, distinguish, and separate classified data. This paper proposes a new concept of operating system security enhancement system which uses loadabel security kernel module (LSKM) or dynamic link library(DLL) and specific conditions for operational environment should be assumed.

  • PDF

Kernel Integration Scheme for 2D Linear Elastic Direct Boundary Element Method Using the Subparametric Element (저매개변수 요소를 사용한 2차원 선형탄성 직접 경계요소법의 Kernel 적분법)

  • Jo, Jun-Hyung;Park, Yeongmog;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제25권5호
    • /
    • pp.413-420
    • /
    • 2012
  • In this study, the Kernel integration scheme for 2D linear elastic direct boundary element method has been discussed on the basis of subparametric element. Usually, the isoparametric based boundary element uses same polynomial order in the both basis function and mapping function. On the other hand, the order of mapping function is lower than the order of basis function to define displacement field when the subparametric concept is used. While the logarithmic numerical integration is generally used to calculate Kernel integration as well as Cauchy principal value approach, new formulation has been derived to improve the accuracy of numerical solution by algebraic modification. The subparametric based direct boundary element has been applied to 2D elliptical partial differential equation, especially for plane stress/strain problems, to demonstrate whether the proposed algebraic expression for integration of singular Kernel function is robust and accurate. The problems including cantilever beam and square plate with a cutout have been tested since those are typical examples of simple connected and multi connected region cases. It is noted that the number of DOFs has been drastically reduced to keep same degree of accuracy in comparison with the conventional isoparametric based BEM. It is expected that the subparametric based BEM associated with singular Kernel function integration scheme may be extended to not only subparametric high order boundary element but also subparametric high order dual boundary element.

Development Of Controller Area Operating System For Uniform Developing Environment (단일개발환경을 위한 제어용 실시간 운영체제의 개발)

  • Park, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.71-74
    • /
    • 1996
  • The concept of uniformity in control implementation is exploded for improving efficiency of design procedure. A controller area operating system which includes real time kernel and control specific shell are developed. Three examples are discussed for the validation of tile system.

  • PDF

A New Self-Organizing Map based on Kernel Concepts (자가 조직화 지도의 커널 공간 해석에 관한 연구)

  • Cheong Sung-Moon;Kim Ki-Bom;Hong Soon-Jwa
    • The KIPS Transactions:PartB
    • /
    • 제13B권4호
    • /
    • pp.439-448
    • /
    • 2006
  • Previous recognition/clustering algorithms such as Kohonen SOM(Self-Organizing Map), MLP(Multi-Layer Percecptron) and SVM(Support Vector Machine) might not adapt to unexpected input pattern. And it's recognition rate depends highly on the complexity of own training patterns. We could make up for and improve the weak points with lowering complexity of original problem without losing original characteristics. There are so many ways to lower complexity of the problem, and we chose a kernel concepts as an approach to do it. In this paper, using a kernel concepts, original data are mapped to hyper-dimension space which is near infinite dimension. Therefore, transferred data into the hyper-dimension are distributed spasely rather than originally distributed so as to guarantee the rate to be risen. Estimating ratio of recognition is based on a new similarity-probing and learning method that are proposed in this paper. Using CEDAR DB which data is written in cursive letters, 0 to 9, we compare a recognition/clustering performance of kSOM that is proposed in this paper with previous SOM.

An ANALYTICTRANSFORM KERNEL DERIVATION METHOD FOR VERSATILE VIDEO CODING (VVC) (VVC 비디오 코덱을 위한 변환 커널 유도 방법)

  • Shrestha, Sandeep;lee, Bumshik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.246-248
    • /
    • 2019
  • In the ongoing standardization of Versatile Video Coding (VVC), DCT-2, DST-7 and DCT-8 are accounted as the vital transform kernels. While storing all of those transform kernels, ROM memory storage is considered as the major problem. So, to deal with this scenario, a common sparse unified matrix concept is introduced in this paper. From the proposed matrix, any point transform kernels (DCT-2, DST-7, DCT-8, DST-4 and DCT-4) can be achieved after some mathematical computation. DCT-2, DST-7 and DCT-8 are the used major transform kernel in this paper.

  • PDF