• 제목/요약/키워드: Keap1

검색결과 48건 처리시간 0.028초

Protein kinase CK2 activates Nrf2 via autophagic degradation of Keap1 and activation of AMPK in human cancer cells

  • Jang, Da Eun;Song, Junbin;Park, Jeong-Woo;Yoon, Soo-Hyun;Bae, Young-Seuk
    • BMB Reports
    • /
    • 제53권5호
    • /
    • pp.272-277
    • /
    • 2020
  • Protein kinase CK2 downregulation induces premature senescence in various human cell types via activation of the reactive oxygen species (ROS)-p53-p21Cip1/WAF1 pathway. The transcription factor "nuclear factor erythroid 2-related factor 2" (Nrf2) plays an important role in maintaining intracellular redox homeostasis. In this study, Nrf2 overexpression attenuated CK2 downregulation-induced ROS production and senescence markers including SA-β-gal staining and activation of p53-p21Cip1/WAF1 in human breast (MCF-7) and colon (HCT116) cancer cells. CK2 downregulation reduced the transcription of Nrf2 target genes, such as glutathione S-transferase, glutathione peroxidase 2, and glutathione reductase 1. Furthermore, CK2 downregulation destabilized Nrf2 protein via inhibiting autophagic degradation of Kelch-like ECH-associated protein 1 (Keap1). Finally, CK2 downregulation decreased the nuclear import of Nrf2 by deactivating AMP-activated protein kinase (AMPK). Collectively, our data suggest that both Keap1 stabilization and AMPK inactivation are associated with decreased activity of Nrf2 in CK2 downregulation-induced cellular senescence.

Zearalenone regulates key factors of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1-nuclear factor erythroid 2-related factor 2 signaling pathway in duodenum of post-weaning gilts

  • Cheng, Qun;Jiang, Shu zhen;Huang, Li bo;Yang, Wei ren;Yang, Zai bin
    • Animal Bioscience
    • /
    • 제34권8호
    • /
    • pp.1403-1414
    • /
    • 2021
  • Objective: This study explored the mechanism of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway under conditions of zearalenone (ZEA)-induced oxidative stress in the duodenum of post-weaning gilts. Methods: Forty post-weaning gilts were randomly allocated to four groups and fed diets supplemented with 0, 0.5, 1.0, or 1.5 mg/kg ZEA. Results: The results showed significant reductions in the activity of the antioxidant enzymes total superoxide dismutase and glutathione peroxidase and increases the malondialdehyde content with increasing concentrations of dietary ZEA. Immunohistochemical analysis supported these findings by showing a significantly increased expression of Nrf2 and glutathione peroxidase 1 (GPX1) with increasing concentrations of ZEA. The relative mRNA and protein expression of Nrf2, GPX1 increased linearly (p<0.05) and quadratically (p<0.05), which was consistent with the immunohistochemical results. The relative mRNA expression of Keap1 decreased linearly (p<0.05) and quadratically (p<0.05) in the duodenum as the ZEA concentration increased in the diet. The relative mRNA expression of modifier subunit of glutamate-cysteine ligase (GCLM) increased quadratically (p<0.05) in all ZEA treatment groups and the relative mRNA expression of quinone oxidoreductase 1 (NQO1) catalytic subunit of glutamate-cysteine ligase decreased linearly (p<0.05) and quadratically (p<0.05) in the ZEA1.0 group and ZEA1.5 group. The relative protein expression of Keap1 and GCLM decreased quadratically (p<0.05) in the duodenum as the ZEA concentration increased in the diet, respectively. The relative protein expression of NQO1 increased linearly (p<0.05) and quadratically (p<0.05) in all ZEA treatment groups in the duodenum. Conclusion: These findings suggest that ZEA regulates the expression of key factors of the Keap1-Nrf2 signaling pathway in the duodenum, which enables resistance to ZEA-induced oxidative stress. Further studies are needed to examine the effects of ZEA induced oxidative stress on other tissues and organs in post-weaning gilts.

Four active monomers from Moutan Cortex exert inhibitory effects against oxidative stress by activating Nrf2/Keap1 signaling pathway

  • Zhang, Baoshun;Yu, Deqing;Luo, Nanxuan;Yang, Changqing;Zhu, Yurong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권5호
    • /
    • pp.373-384
    • /
    • 2020
  • Paeonol, quercetin, β-sitosterol, and gallic acid extracted from Moutan Cortex had been reported to possess anti-oxidative, anti-inflammatory, and anti-tumor activities. This work aimed to illustrate the potential anti-oxidative mechanism of monomers in human liver hepatocellular carcinoma (HepG2) cells-induced by hydrogen peroxide (H2O2) and to evaluate whether the hepatoprotective effect of monomers was independence or synergy in mice stimulated by carbon tetrachloride (CCl4). Monomers protected against oxidative stress in HepG2 cells in a dose-response manner by inhibiting the generation of reactive oxygen species, increasing total antioxidant capacity, catalase and superoxide dismutase (SOD) activities, and activating the antioxidative pathway of nuclear factor E2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) signaling pathway. We found that the in vitro antioxidant capacities of paeonol and quercetin were better than those of β-sitosterol and gallic acid. Furthermore, paeonol apparently diminished the levels of alanine transaminase and aspartate aminotransferase, augmented the contents of glutathione and SOD, promoted the expressions of Nrf2 and heme oxygenase-1 proteins in mice stimulated by CCl4. In HepG2 cells, paeonol, quercetin, β-sitosterol, and gallic acid play a defensive role against H2O2-induced oxidative stress through activating Nrf2/Keap1 pathway, indicating that these monomers have anti-oxidative properties. Totally, paeonol and quercetin exerted anti-oxidative and hepatoprotective effects, which is independent rather than synergy.

Antioxidant Activity of Novel Casein-Derived Peptides with Microbial Proteases as Characterized via Keap1-Nrf2 Pathway in HepG2 Cells

  • Zhao, Xiao;Cui, Ya-Juan;Bai, Sha-Sha;Yang, Zhi-Jie;Cai, Miao;Megrous, Sarah;Aziz, Tariq;Sarwar, Abid;Li, Dong;Yang, Zhen-Nai
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권8호
    • /
    • pp.1163-1174
    • /
    • 2021
  • Casein-derived antioxidant peptides by using microbial proteases have gained increasing attention. Combination of two microbial proteases, Protin SD-NY10 and Protease A "Amano" 2SD, was employed to hydrolyze casein to obtain potential antioxidant peptides that were identified by LC-MS/MS, chemically synthesized and characterized in a oxidatively damaged HepG2 cell model. Four peptides, YQLD, FSDIPNPIGSEN, FSDIPNPIGSE, YFYP were found to possess high 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability. Evaluation with HepG2 cells showed that the 4 peptides at low concentrations (< 1.0 mg/ml) protected the cells against oxidative damage. The 4 peptides exhibited different levels of antioxidant activity by stimulating mRNA and protein expression of the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), as well as nuclear factor erythroid-2-related factor 2 (Nrf2), but decreasing the mRNA expression of Kelch-like ECH-associated protein 1 (Keap1). Furthermore, these peptides decreased production of reactive oxygen species (ROS) and malondialdehyde (MDA), but increased glutathione (GSH) production in HepG2 cells. Therefore, the 4 casein-derived peptides obtained by using microbial proteases exhibited different antioxidant activity by activating the Keap1-Nrf2 signaling pathway, and they could serve as potential antioxidant agents in functional foods or pharmaceutic preparation.

Anti-oxidizing effect of the dichloromethane and hexane fractions from Orostachys japonicus in LPS-stimulated RAW 264.7 cells via upregulation of Nrf2 expression and activation of MAPK signaling pathway

  • Lee, Hyeong-Seon;Lee, Gyeong-Seon;Kim, Seon-Hee;Kim, Hyun-Kyung;Suk, Dong-Hee;Lee, Dong-Seok
    • BMB Reports
    • /
    • 제47권2호
    • /
    • pp.98-103
    • /
    • 2014
  • Orostachys japonicus shows various biological activities. However, the molecular mechanisms remain unknown in LPS-stimulated macrophages. Here, we investigated the anti-oxidizing effect of the dichloromethane (DCM) and hexane fractions from O. japonicus (OJD and OJH) against oxidative stress in RAW 264.7 cells stimulated by LPS. OJD and OJH significantly increased the expression of heme oxygenase-1 (HO-1) in a dose- and time-dependent manner. Additionally, it was found that the expression of HO-1 was stimulated by Nrf2 activated via degradation of Keap1. ERK and p38 inhibitors repressed HO-1 induced by OJD and OJH in LPS-stimulated cells, respectively. In conclusion, these results suggest that OJD and OJH may block oxidative damage stimulated by LPS, via increasing the expression of HO-1 and Nrf2, and MAPK signaling pathway.

Nrf2 and Keap1 Regulation of Antioxidant and Phase II Enzyme Genes

  • Yamamoto, M.
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.24-42
    • /
    • 2002
  • Antioxidant responsive element (ARE) mediates the transcriptional activation of the genes encoding phase II drug metabolizing enzymes and antioxidative stress genes. The ARE consensus sequence shows high similarity to NF-E2 binding sequence, a cisacting erythroid gene regulatory element.(omitted)

  • PDF

Thioacetamide 유발 급성 간손상 동물모델에 백작약 열수 추출물이 미치는 효능 (Effects of water extract of Paeoniae Radix Alba on a thioacetamide induced acute liver injury rat model)

  • 이세희;신미래;이지혜;노성수
    • Journal of Nutrition and Health
    • /
    • 제54권2호
    • /
    • pp.224-237
    • /
    • 2021
  • 본 연구는 백작약 열수 추출물의 in vitro 항산화능을 평가하였으며, TAA를 유발한 급성 간손상 동물 모델을 이용하여 항산화 활성으로 인한 산화적 스트레스 억제 효과와 간 기능 보호효과 여부를 검증하였다. 총 폴리페놀, 총 플라보노이드 함량, DPPH 및 ABTS 자유 라디칼 소거능 측정 결과 높은 항산화능을 나타냈으며, 체중, 간무게 및 간중량 비율 (%)이 대조군에 비해 S100군과 PR100군보다 PR200군에서 더욱 감소하였다. 약물투여군의 혈중 암모니아, GOT 및 GPT 수준의 유의적인 감소를 확인하였으며, western blot 실시 후 대부분의 인자에서 유의적인 차이를 확인하였다. 이 결과를 토대로 백작약 열수 추출물이 Nrf2-Keap1경로의 활성화를 통해 항산화 효소를 증가시켰으며, 항산화능을 통한 산화적 스트레스 개선에 긍정적인 효과가 있음을 확인할 수 있었다. 따라서 백작약 열수 추출물은 급성 간손상시 간보호 효과를 위한 후보 소재로서 가능성이 있다고 판단된다.

Thioacetamide로 유발된 간섬유증 동물 모델에서 백작약이 미치는 효능 (Effect of Paeoniae Radix Alba on a thioacetamide induced liver fibrosis mice model)

  • 이세희;이진아;신미래;서부일;노성수
    • 한국식품과학회지
    • /
    • 제53권5호
    • /
    • pp.544-552
    • /
    • 2021
  • 본 연구에서 in vitro를 통해 백작약 열수 추출물의 total polyphenol, total flavonoid 함량, DPPH 및 ABTS radical 소거능 측정으로 높은 항산화능을 확인했으며, 백작약 열수 추출물 투여로 인한 AST, ALT, ammonia 및 MPO 수치의 호전을 확인하였다. 또한 간 조직을 이용한 western blot 실시 후 모든 인자에서 유의적인 차이를 확인하였다. 이 결과를 토대로, 백작약 열수 추출물이 TAA로 인한 산화적 스트레스를 Nrf2/Keap1 경로의 활성화를 통해 SIRT1/AMPK/NF-kBp65를 조절하였으며, 섬유화 관련 단백질의 발현을 억제함으로써 간섬유증에 대한 백작약 열수 추출물의 긍정적인 효과가 있음을 제시하였다. 따라서 선행 연구를 통해 TAA로 유발한 급성 간손상 동물 모델에서 간보호 효과를 나타낸 백작약 열수 추출물이 TAA로 유발한 간섬유증 동물 모델에서 산화적 스트레스 억제와 간 기능 개선을 나타냈으며 향후 후보 소재로서 가능성이 있다고 판단된다.