• Title/Summary/Keyword: Karman와

Search Result 290, Processing Time 0.022 seconds

Dynamics and instability of the Karman wake mode induced by periodic forcing

  • Mureithi, Njuki W.
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.265-280
    • /
    • 2004
  • This paper presents some fundamental results on the dynamics of the periodic Karman wake behind a circular cylinder. The wake is treated like a dynamical system. External forcing is then introduced and its effect investigated. The main result obtained is the following. Perturbation of the wake, by controlled cylinder oscillations in the flow direction at a frequency equal to the Karman vortex shedding frequency, leads to instability of the Karman vortex structure. The resulting wake structure oscillates at half the original Karman vortex shedding frequency. For higher frequency excitation the primary pattern involves symmetry breaking of the initially shed symmetric vortex pairs. The Karman shedding phenomenon can be modeled by a nonlinear oscillator. The symmetrical flow perturbations resulting from the periodic cylinder excitation can also be similarly represented by a nonlinear oscillator. The oscillators represent two flow modes. By considering these two nonlinear oscillators, one having inline shedding symmetry and the other having the Karman wake spatio-temporal symmetry, the possible symmetries of subsequent flow perturbations resulting from the modal interaction are determined. A theoretical analysis based on symmetry (group) theory is presented. The analysis confirms the occurrence of a period-doubling instability, which is responsible for the frequency halving phenomenon observed in the experiments. Finally it is remarked that the present findings have important implications for vortex shedding control. Perturbations in the inflow direction introduce 'control' of the Karman wake by inducing a bifurcation which forces the transfer of energy to a lower frequency which is far from the original Karman frequency.

Re-evaluation of Change of Mean Velocity Profile in Open-Channel Turbulent Flows due to Sediment Particles (유사입자에 의한 개수로 난류 유속 분포의 변화에 대한 재검토)

  • Yu Kwon-Kyu;Yoon Byung-Man
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.9 s.170
    • /
    • pp.727-735
    • /
    • 2006
  • It is well known that sediment particles introduced in open-channel turbulent flows change mean velocity profile, since Vanoni suggested the reduction of the Karman constant in 1946. However, how the sediment particles take such a role and what parameters would be changed have been debated up to now. Some researchers, on the other hand, have insisted that the constant would not be changed regardless of introducing sediment particles. The present study is a careful re-evaluation of the previous studies on this issue. The study revealed some questionable approaches or methods in the decision of the previous researches and found the reason why this issue has been debated for a long time. The result indicated that the Karman number is reduced by adding sediment particles, but the amount of reduction is much smaller than the previous researches insisted. Finally, the present study proposes a mechanism of the Karman number reduction due to sediment particles.

The Effect of Karman Vortex for Mixing in a Micro-channel with an Oscillating Micro-stirrer (진동 교반기가 있는 미소채널에서 혼합에 대한 Karman 와의 영향)

  • An, Sang-Joon;Maeng, Joo-Sung;Kim, Yong-Dae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.144-152
    • /
    • 2006
  • In order to consider the effect of Karman vortex for mixing, mixing indices are calculated for 4 models of micro channel flows driven from the combinations of a circular cylinder and a oscillating stirrer. And their results are compared to that of a simple straight micro channel flow(model I). The mixing rate is improved 5.5 times by Karman vortex (model II) and 11.0 times by the stirrer(model III) respectively. In case of successive mixing by the cylinder and the stirrer(model IV), $27\%$ of shortening the channel length for the complete mixing as well as 1.37 times improvement of mixing efficiency then model III. And then, variation of mixing indices are much stable comparing with the others. Thus, it is found that the Karman vortex plays a good role as a pre-mixing method. The D2Q9 Lattice Boltzmann methods are used.

Change of Velocity Profile due to Introduction of Suspended-Sediment Particles in Turbulent Open-Channel Flow (부유사 입자에 의한 개수로 난류 유속 분포의 변화)

  • Yu, Kwon-Kyu;Yoon, Byung-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.357-361
    • /
    • 2005
  • 부유사 입자를 난류 흐름 중에 투입하면 유속의 연직 분포를 다소간 변화시키는 것으로 알려져 왔다. 1946년에 Vanoni가 Karman 상수의 감소를 제안한 이후 이것은 상당한 논쟁을 불러 왔다. 본 연구에서는 입자 추적유속계(PTV)를 이용하여 개수로 중의 난류와 유사의 속도를 직접 측정하고, 이 자료를 분석하여 부유사 입자가 개수로 난류의 유속 분포에 어떻게 영향을 미치는 가를 구명하였다. 또한 기존의 연구의 측정 자료들과 그들의 주장을 재검토하였다. 분석 결과 부유사 입자는 Karman 상수를 다소 감소시키는 것으로 나타났다. 이 감소 현상은 물과 유사의 상대적인 속도 분포로 설명할 수 있다. 다만 Karman상수의 감소 정도는 종래의 연구자들이 주장한 것보다 상당히 작다. 이처럼 차이가 나는 이유는 종래의 연구들이 Karman 상수의 산정 방법이나 이용한 자료의 선택에서 문제가 있었기 때문이다. 또한, 난류 중에 투입된 부유사는 마찰 속도에는 그다지 영향을 미치지 않는 것으로 나타났다.

  • PDF

A study of Instability on Oscillating Laminar Premixed Flames (진동하는 층류예혼합화염의 불안정성에 관한 연구)

  • Lee, Won-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.8-15
    • /
    • 2008
  • When a circular cylinder is placed at the center of a slot burner nozzle, once stable Woflhard-Parker type laminar lean premixed flame is changed to an oscillating flame with self-induced noise. The wrinkled flame surface showed the same pattern and frequency of the Karman vortex street at the downstream of a circular cylinder. The interaction of flame with Karman vortex street is observed to be responsible for flame oscillation. The measured flame oscillation frequency is very similar to the estimated Karman vortex shedding frequency based on the St-Re relationship of the flow past circular cylinder, which could be considered as a strong evidence for the interaction between laminar pre-mixed flame and a Karman vortex street. As Reynolds number increases oscillation frequency decreases and the self-induced noise level increases as well as the flame front is more severly wrinkled. This result suggests that the flame/vortex interaction becomes more active at higher Re.

  • PDF

Numerical Studies on the Variation of Flow Structure Due to Sea Surface Temperature at the Lee Side of Jeju Island in the Korean Peninsula (해수면 온도변화에 따른 제주도 후면 흐름구조 변화에 관한 수치연구)

  • Lee, Soon-Hwan;Park, Gwang-Soon
    • Journal of the Korean earth science society
    • /
    • v.27 no.1
    • /
    • pp.61-72
    • /
    • 2006
  • Numerical studies on the influence of interaction between atmosphere and ocean on the variation of Karman vortex at the lee side of Jeju Island were carried out. Karman vortex tends to be occurred at limited height associated with Hanla mountain. And we can find clear Karman vortex at 900 hPa height in this study. One big vortex cell occurred at lee side of Jeju Island in the begging stage of its development and the cell was divided into three small cells as time goes by. And the strength and lifetime of small vortexes depend on the distribution of SST (Sea Surface Temperature). Weak gradient of SST makes long-lasting Karman vortex but produces weak potential vorticity at lee side of Jeju-do in comparison with the vortex under strong SST gradient. Strong SST gradient also increases not only the mixing depth but also the mixing ratio at lower level of troposphere. And the increased atmospheric mixing decreases the mechanical forcing due to isolated topography. Then the strength of Karman vortex at the lee side of Jeju Island becomes weak under strong gradient of SST. Thus the evolution of Karman vortex is closely related to distribution of SST around the isolated island.

A Numerical Study on the Karman Vortex Generated by Breaking of Mountain Wave

  • Kang Sung-Dae;Kimura Fujio
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.2
    • /
    • pp.105-117
    • /
    • 1997
  • The formation mechanism of the vortex streets in the lee of the mountain is investigated by a three-dimensional numerical model. The model is based upon the hydrostatic Boussinesq equations in which the vertical turbulent momentum flux is estimated by a turbulence parameterization scheme, but the horizontal viscosity is assumed to be constant. The results show that Karman vortex streets can form even without surface friction in a constant ambient flow with uniform stratification. The vortex formation is related to breaking of the mountain wave, which depends on the Froude number (Fr). In the case of a three-dimensional bell-shaped mountain, the wave breaking occurs when Fr is less than about 0.8, while a Karman vortex forms when Fr is less than about 0.22. Vortex formation also depends on Reynolds number, which is estimated from the horizontal diffusivity. The vortex formation can be explained by the wave saturation theory given by Lindzen (1981) with some modification. Simulations in this study show that in the case of Karman vortex formation the momentum flux in the lower level is much larger than the saturated momentum flux whereas it is almost equal to the saturated momentum at the upper levels as expected from the saturation theory. As a result, large flux divergence is produced in the lower layer, the mean flow is decelerated behind the mountain, and the horizontal wind shear forms between unmodified ambient wind. The momentum exchange between the mean flow and the mountain wave is produced by the turbulence within a breaking wave. From the result, well developed vortices like Karman vortex can be formed. The results of the momentum budget calculated by the hydrostatic model are almost the same as nonhydrostatic results as long as horizontal scale of the mountain is 10 km. A well developed Karman vortex similar to the hydrostatic one was simulated in the nonhydrostatic case. Therefore, we conclude that the hydrostatic assumption is adequate to investigate the origin of the Karman vortex from the viewpoint of wave breaking.

  • PDF

Radiation from a Millimeter-Wave Rectangular Waveguide Slot Array Antenna Enclosed by a Von Karman Radome

  • Kim, Jihyung;Song, Sung Chan;Shin, Hokeun;Park, Yong Bae
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.154-159
    • /
    • 2018
  • In this paper, electromagnetic radiation from a slot array antenna enclosed by a Von Karman radome is analyzed by using the ray tracing method and Huygens's principle. We consider the rectangular slot array antenna and the Von Karman radome. The radiation patterns are calculated by using the surface currents of the radome to illustrate the electromagnetic behaviors of the radome-enclosed waveguide slot array antenna.

Visualization Study on the Phase Difference of a Dragonfly Type Wing (잠자리 유형 날개의 위상차에 대한 가시화 연구)

  • Kim Hyun Seak;Kim Song Hak;Chang Jo Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.43-54
    • /
    • 2004
  • A visualization study was carried out to investigate the effects of phase difference qualitatively by examining wake pattern on the phase difference of a dragonfly type wing model. The model was built with scaled-up, flapping wings composed of a paired wing with fore- and hind-wings in tandem that mimick the wing form of a dragonfly. The present study was conducted by using the smoke-wire technique and an electronic device below the tandem wings was mounted to find the exact wing position angles. Uncertainties in wing position angle are about $\pm$$1.0^{\cire}$ and instantaneous wing positional angle varies from $-16.5^{\cire}$ to $+22.8^{\cire}$. The tests were made at phase differences between the fore-wing and hind-wing at $0^{\cire}$, $90^{\cire}$, $180^{\cire}$ and $270^{\cire}$. The results show that Karman vortex structures were produced at phase differences of $90^{\cire}$, $180^{\cire}$ and $270^{\cire}$, but Karman vortex structures were not observed at the phase difference of $0^{\cire}$.