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I. INTRODUCTION 

Radomes are widely used to protect antennas from their 

physical environment. As they distort the transmitted and re-

ceived radar signals, they require electromagnetic analysis. Ex-

tensive studies have been conducted on the electromagnetic 

characteristics of radomes [1–14]. Ray tracing and physical op-

tics (PO) method were suggested to analyze radomes [1]. Cur-

ved radomes enclosed in a single-element antenna were ana-

lyzed by using various methods [2–7]. The radiation pattern of a 

hemisphere radome fed from a circular aperture was calculated 

by using the dyadic Green’s function technique/PO method [2] 

and the aperture integration-surface integration (AI-SI) [3]. 

The electromagnetic characteristics of the frequency selective 

surface tangent-ogive radome-enclosed antenna were analyzed 

using ray tracing and Huygens’s principle [4]. The electromag-

netic properties of the Von Karman radome-enclosed dipole 

antenna were analyzed by using the method of moments (MoM) 

[5] and coupled surface integral equation [6]. The radiation 

pattern of the Cassegrain monopulse antenna covered with a 

multilayered Von Karman radome was also analyzed by using 

the AI-SI [7]. The scattered fields of the Von Karman radome 

were calculated by using the MoM [8]. The radiation pattern of 

the conformal load-bearing antenna structure was calculated 

using the ray tracing–surface integration [9]. The boresight er-

ror (BSE) induced by a gimbal angle is analyzed by using the 

ray tracing technique [10]. Moreover, curved radomes enclosed 

by multiple sources were investigated using various analysis 

techniques [11–14]. The transmission through the radome-

enclosed multiple sources was examined by using the multilevel 

fast multipole algorithm [11]. The hemisphere radome with a 

metallic cap was analyzed by using the time-domain finite inte-

gration theorem [12]. A tangent-ogive radome with a metallic 

cap was examined using the iterative PO (IPO)–boundary inte-
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gral–finite element method (FEM) [13]. The radiation proper-

ties of dipole arrays enclosed by the Von Karman radome were 

analyzed by using the IPO scheme [14]. However, the analysis 

of the hundreds of slot antennas enclosed by Von Karman ra-

dome based on an actual model was not presented. In this paper, 

we use the results of [15] for a waveguide array antenna with 

hundreds of rectangular slots and analyze the electromagnetic 

radiation from the antenna enclosed by a Von Karman radome 

based on the ray tracing technique and Huygens’s principle. Our 

method is known to be numerically more efficient than the full-

wave analysis or the IPO scheme. The rays from each slot are 

traced and the electromagnetic fields on the outer surface of the 

radomes are calculated by Huygens’s principle. The radiation 

patterns are computed by using the surface currents on the outer 

surface of the radome to understand the electromagnetic charac-

teristics of the radome-enclosed waveguide slot array. 

Ⅱ. FIELD ANALYSIS  

The waveguide slot array antenna enclosed by a Von Karman 

radome is shown in Fig. 1. The waveguide array antenna has 

112 elements [15]. The dielectric constant of the radome and 

tilt angle are εr and αx. The shape of the Von Karman radome 

satisfies the following equations in the cylindrical coordinates. 
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where Li, Ri, and t are the ith radome surface length, radius, and 

intervening variable, respectively. Fig. 2 illustrates the analysis 

procedure of the radome-enclosed waveguide slot array antenna 

based on the ray tracing and Huygens’s principle. 

The waveguide slot array antenna based on an actual model 

[15] has 112 elements and the electric fields of the slots are ob- 
 

 
Fig. 1. Waveguide slot array antenna enclosed by a Von Karman 

radome. 

 
Fig. 2. Analysis procedure of the radome-enclosed waveguide slot 

array antenna. 

 

tained by the simulation of the ANSYS High Frequency Struc-

ture Simulator (HFSS) based on the 3D FEM (Fig. 3). Details 

on how to design the antenna can be found in [15]. We assume 

that the point source is at the center of each slot. Using the sur-

face equivalence theorem [16], the magnetic currents on the slot 

are given by 
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where 𝑛ො is the normal vector of the slot and 𝐸௧ሬሬሬ⃗  is the tangen-

tial electric field of the slot. On the radome surface, the meshes 

are created in the vertical direction (𝑧̂) and in the azimuthal 

direction (𝜙෠) (Fig. 4). The radome surface is divided into M 

(vertical direction) × N (azimuthal direction) meshes. We gen-

erate the rays from rectangular slots, the origins of which are the 

centers of the slots (x0, y0, z0) and the ray direction vector is 𝑘ప,ఫ
ሬሬሬሬሬ⃗ . 

 

 
Fig. 3. Electric field of the rectangular slots. 
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Fig. 4. Mesh and ray generation. 

 

Note that (xi,j, yi,j, zi,j) is the center of the mesh (M = i and N = j). 

To apply the ray tracing technique inside the radome, the ray 

path is calculated [4]. We find the intercept point of the ray 

incident on a ray radome surface based on the iterative method 

[1]. At the intercept point (xj, yi, zi), the normal vector (𝑛ො௩) of 

the ith Von Karman radome surface can be expressed as 
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where tρ and tz are the horizontal and vertical components of 

the tangential vectors, respectively. At the intercept point, the 

incident fields are split by the perpendicular and parallel com-

ponents. The reflected and transmitted waves are obtained by 

using the reflection and transmission coefficients of each polari-

zation. On the outer radome surface, we enforce Huygens’s 

principle to calculate the radiation pattern of the Von Karman 

radome-enclosed slot array antenna [4]. We use the far-field 

approximation [15] to calculate the radiated fields from each 

radome mesh as 
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where  nmA ,  is the surface area of each mesh as 
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where, L2 and R2 are the length and the radius of the Von Kar-

man radome, respectively. The radiated power can be obtained 

from the Poynting vector (𝑃ሬ⃗ ) as 
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where 𝐸ሬ⃗  and 𝐻ሬሬ⃗  are the radiated electromagnetic fields at the 

observation points. 

III. NUMERICAL RESULTS 

To check the validity of our analysis, we consider the radome 

with a dielectric constant (εr) of 1, which means (that the array 

has no radome). Fig. 5 illustrates the radiation pattern of the 

Von Karman radome-enclosed waveguide slot array antenna 

designed for the Ka-band. We compare our calculated result 

with the radiation pattern of the slot array antenna. As the mesh 

number increases to 400 × 400, the results of the ray tracing tech- 
 

 
Fig. 5. Radiation pattern of the radome-enclosed waveguide slot 

array antenna (εr = 1). 
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Table 1. Number of mesh and mesh size (outer surface) 

Number of mesh (M × N) Mesh size (z × )

80 × 80 0.87 × 0.061 – 1.3
100 × 100 0.70 × 0.041 – 1.0
200 × 200 0.35 × 0.012 – 0.50
400 × 400 0.17 × 0.0037 – 0.25

 

 
(a)  

 
(b) 

 
(c) 

Fig. 6. Radiation pattern of the radome-enclosed waveguide slot 

array antenna. (a) x = 10°, (b) x = 20°, and (c) x = 30°. 

 

nique and the case of the slot antenna without a radome show a 

good agreement. Note that the mesh size should be less than 

/4 (Table 1).  

Fig. 6 shows the radiation pattern of the Von Karman ra-

dome-enclosed waveguide slot array antenna for the different 

gimbal tilt angles (x). The design parameters of the radome are 

presented in Table 2, and Table 3 shows the transmission loss 

of the radome. Two possibilities can account for the gain reduc-

tion. The transmission loss and the sidelobe level decrease as the 

tilt angle increases because of the enhancement of reflection loss  

 

  
(a)                     (b) 

  
(c)                         (d)  

 
(e)                         (f)  

Fig. 7. Surface current of the radome. (a) x = 10° (side view), (b) x 

= 10° (top view), (c) x = 20° (side view), (d) x = 20° (top 

view), (e) x = 30° (side view), (f) x = 30° (top view). 

 

Table 2. Design parameter of the Von Karman radome in the case of 

Fig. 5 

Parameter Value

Inner radius (R1) 15.2

Outer radius (R2) 16.0 

Inner length (L1) 66.9 

Outer length (L2) 68.0 

r 3.41

 

Table 3. Transmission loss and the sidelobe level of the Von Karman 

radome-enclosed waveguide slot array antenna 

 
Gimbal tilt angle (x) 

10° 20° 30° 

Transmission loss (dB) -3.10 -3.35 -1.64 

Sidelobe level (dB) -9.29 -16.55 -20.44



JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 18, NO. 3, JUL. 2018 

158 
   

  

at smaller incident angles. Note that the image robes are ob-

served at nearly  = −40° in Fig. 6 because of the internal reflec-

tion within the radome. Fig. 7 illustrates the surface currents of 

the radome for the different gimbal tilt angles (x). Large cur-

rent distributions can be seen near the each tilt angle and the 

angle of the image robe. 

IV. CONCLUSION 

We have analyzed the electromagnetic radiation from a slot 

array antenna enclosed by a Von Karman radome using the ray 

tracing technique and Huygens’s principle. The radiation pat-

terns of the radome-enclosed waveguide slot array antenna were 

calculated to illustrate the electromagnetic behaviors of the ra-

domes. Our method is useful to estimate the electromagnetic 

characteristics, such as the radiation patterns and the BSE, of 

the radome-enclosed waveguide slot array antenna. 
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