• 제목/요약/키워드: Kaplan-Meier estimate.

검색결과 48건 처리시간 0.055초

단조 서포트벡터기계를 이용한 카플란-마이어 생존함수의 평활 (Smoothing Kaplan-Meier estimate using monotone support vector regression)

  • 황창하;심주용
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권6호
    • /
    • pp.1045-1054
    • /
    • 2012
  • 서포트벡터 기계는 분류 및 비선형 함수추정에서 유용하게 사용되고 있는 통계적 기법이다. 본 논문에서는 두 개의 입력변수와 회귀함수의 단조 관계를 이용하여 단조 서포트벡터기계를 제안하고, Kaplan-Meier의 방법에 의해서 생존함수의 추정값이 주어진 경우 제안된 방법을 이용하여 생존 함수를 평활하는 방법 또한 제안한다. 모의실험에서는 실제 생존함수를 이용하여 Kaplan-Meier의 방법에 의한 생존함수의 추정값과의 성능을 비교함으로써 제안된 방법의 우수성을 보이기로 한다.

Regression Quantiles Under Censoring and Truncation

  • Park, Jin-Ho;Kim, Jin-Mi
    • Communications for Statistical Applications and Methods
    • /
    • 제12권3호
    • /
    • pp.807-818
    • /
    • 2005
  • In this paper we propose an estimation method for regression quantiles with left-truncated and right-censored data. The estimation procedure is based on the weight determined by the Kaplan-Meier estimate of the distribution of the response. We show how the proposed regression quantile estimators perform through analyses of Stanford heart transplant data and AIDS incubation data. We also investigate the effect of censoring on regression quantiles through simulation study.

ON THE EMPIRICAL MEAN LIFE PROCESSES FOR RIGHT CENSORED DATA

  • Park, Hyo-Il
    • Journal of the Korean Statistical Society
    • /
    • 제32권1호
    • /
    • pp.25-32
    • /
    • 2003
  • In this paper, we define the mean life process for the right censored data and show the asymptotic equivalence between two kinds of the mean life processes. We use the Kaplan-Meier and Susarla-Van Ryzin estimates as the estimates of survival function for the construction of the mean life processes. Also we show the asymptotic equivalence between two mean residual life processes as an application and finally discuss some difficulties caused by the censoring mechanism.

중도절단 회귀모형에서 역절단확률가중 방법 간의 비교연구 (A comparison study of inverse censoring probability weighting in censored regression)

  • 신정민;김형우;신승준
    • 응용통계연구
    • /
    • 제34권6호
    • /
    • pp.957-968
    • /
    • 2021
  • 역중도절단확률가중(inverse censoring probability weighting, ICPW)은 생존분석에서 흔히 사용되는 방법이다. 중도절단 회귀모형과 같은 ICPW 방법의 응용에 있어서 중도절단 확률의 정확한 추정은 핵심적인 요소라고 할 수 있다. 본 논문에서는 중도절단 확률의 추정이 ICPW 기반 중도절단 회귀모형의 성능에 어떠한 영향을 주는지 모의실험을 통하여 알아보았다. 모의실험에서는 Kaplan-Meier 추정량, Cox 비례위험(proportional hazard) 모형 추정량, 그리고 국소 Kaplan-Meier 추정량 세 가지를 비교하였다. 국소 KM 추정량에 대해서는 차원의 저주를 피하기 위해 공변량의 차원축소 방법을 추가적으로 적용하였다. 차원축소 방법으로는 흔히 사용되는 주성분분석(principal component analysis, PCA)과 절단역회귀(sliced inverse regression)방법을 고려하였다. 그 결과 Cox 비례위험 추정량이 평균 및 중위수 중도절단 회귀모형 모두에서 중도절단 확률을 추정하는 데 가장 좋은 성능을 보여주었다.

척도모수가 미지인 임의중도절단자료의 EDF 통계량을 이용한 지수 검정 (Testing Exponentiality Based on EDF Statistics for Randomly Censored Data when the Scale Parameter is Unknown)

  • 김남현
    • 응용통계연구
    • /
    • 제25권2호
    • /
    • pp.311-319
    • /
    • 2012
  • 수명시간 분석에서 가장 간단하고 또한 자주 이용되는 분포는 지수분포이다. Koziol과 Green (1976)은 Cram$\acute{e}$r-von Mises 통계량을 Kaplan-Meier의 product limit 경험분포함수를 이용하여 임의중도절단자료에 대해서 일반화하였다. 그러나 이 통계량은 모수의 값이 주어진 단순귀무가설을 가정하고 있으므로 실제 자료에 적용하기에는 어려운 점이 있다. 본 논문에서는 척도모수가 미지인 지수분포의 적합도 검정에 모수를 추정하여 Koziol-Green 통계량을 적용하였다. 그리고 같은 방법으로, 전통적인 Kolmogorov-Smirnov 검정통계량을 일반화하고 두 가지 통계량의 검정력을 모의실험을 통하여 비교하였다. 그 결과 전반적으로 일반화된 Koziol-Green 통계량이 Kolmogorov-Smirnov 통계량보다 지수분포의 검정에 있어서는 좀 더 좋은 검정력을 보여주었다.

임의중도절단자료에 대한 로그정규성 검정 (Testing Log Normality for Randomly Censored Data)

  • 김남현
    • 응용통계연구
    • /
    • 제24권5호
    • /
    • pp.883-891
    • /
    • 2011
  • 수명시간에 대한 모형으로 로그정규분포가 자주 사용되며, 이는 자료의 변환에 의하여 정규성 검정과 동일한 문제로 생각할 수 있다. 따라서 자료의 로그정규성 검정을 위하여, 정규성 검정에 자주 이용되는 Shapiro-Wilk 형태의 검정통계량을 Kaplan-Meier의 product limit 경험분포함수를 이용하여 임의중도절단자료로 일반화한다. Cram er von Mises 통계량을 임의중도절단자료로 일반화한 Koziol과 Green (1976)의 통계량과 비교하였으며 이를 위하여 단순귀무가설을 가정하였다. 중도절단분포에 대한 모형으로는 Koziol과 Green (1976)에서 제시한 모형과 이와 유사한 다른 모형 두 가지를 고려하였다. 검정력 비교 결과 제시한 통계량이 로그정규성 또는 정규성 검정에 더 좋은 검정력을 보여주었으며 검정력은 중도절단분포 모형보다는 자료의 중도절단비율에 영향을 받는다는 것을 볼 수 있었다.

A STUDY ON KERNEL ESTIMATION OF A SMOOTH DISTRIBUTION FUNCTION ON CENSORED DATA

  • Jee, Eun Sook
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제31권2호
    • /
    • pp.133-140
    • /
    • 1992
  • The problem of estimating a smooth distribution function F at a point $\tau$ based on randomly right censored data is treated under certain smoothness conditions on F . The asymptotic performance of a certain class of kernel estimators is compared to that of the Kap lan-Meier estimator of F($\tau$). It is shown that the .elative deficiency of the Kaplan-Meier estimate. of F($\tau$) with respect to the appropriately chosen kernel type estimate. tends to infinity as the sample size n increases to infinity. Strong uniform consistency and the weak convergence of the normalized process are also proved.

  • PDF

기술평가 자료를 이용한 중소기업의 생존율 추정 및 생존요인 분석 (A Study on the Survival Probability and Survival Factors of Small and Medium-sized Enterprises Using Technology Rating Data)

  • 이영찬
    • 지식경영연구
    • /
    • 제11권2호
    • /
    • pp.95-109
    • /
    • 2010
  • The objectives of this study are to identify the survival function (hazard function) of small and medium enterprises by using technology rating data for the companies guaranteed by Korea Technology Finance Corporation (KOTEC), and to figure out the factors that affects their survival. To serve the purposes, this study uses Kaplan-Meier Analysis as a non-parametric method and Cox proportional hazards model as a semi-parametric one. The 17,396 guaranteed companies that assessed from July 1st in 2005 to December 31st in 2009 are selected as samples (16,504 censored data and 829 accident data). The survival time is computed with random censoring (Type III) from July in 2005 as a starting point. The results of the analysis show that Kaplan-Meier Analysis and Cox proportional hazards model are able to readily estimate survival and hazard function and to perform comparative study among group variables such as industry and technology rating level. In particular, Cox proportional hazards model is recognized that it is useful to understand which technology rating items are meaningful to company's survival and how much they affect it. It is considered that these results will provide valuable knowledge for practitioners to find and manage the significant items for survival of the guaranteed companies through future technology rating.

  • PDF

이종 환경에서 운용되는 부품의 신뢰도 평가 방법 연구 (Study on the Reliability Evaluation Method of Components when Operating in Different Environments)

  • 황정택;김종학;전주연;한재현
    • 한국안전학회지
    • /
    • 제32권5호
    • /
    • pp.115-121
    • /
    • 2017
  • This paper is to introduce the main modeling assumptions and data structures associated with right-censored data to describe the successful methodological ideas for analyzing such a field-failure-data when components operating in different environments. The Kaplan - Meier method is the most popular method used for survival analysis. Together with the log-rank test, it may provide us with an opportunity to estimate survival probabilities and to compare survival between groups. An important advantage of the Kaplan - Meier curve is that the method can take into account some types of censored data, particularly right-censoring. The above non-parametric method was used to verify the equality of parts life used in different environments. After that, we performed the life distribution analysis using the parametric method. We simulated data from three distributions: exponential, normal, and Weibull. This allowed us to compare the results of the estimates to the known true values and to quantify the reliability indices. Here we used the Akaike information criterion to find a suitable life time distribution. If the Akaike information criterion is the smallest, the best model of failure data is presented. In this paper, no-nparametrics and parametrics methods are analyzed using R program which is a popular statistical program.

Black Hispanic and Black Non-Hispanic Breast Cancer Survival Data Analysis with Half-normal Model Application

  • Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Vera, Veronica;Abdool-Ghany, Faheema;Gabbidon, Kemesha;Perea, Nancy;Stewart, Tiffanie Shauna-Jeanne;Ramamoorthy, Venkataraghavan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9453-9458
    • /
    • 2014
  • Background: Breast cancer is the second leading cause of cancer death for women in the United States. Differences in survival of breast cancer have been noted among racial and ethnic groups, but the reasons for these disparities remain unclear. This study presents the characteristics and the survival curve of two racial and ethnic groups and evaluates the effects of race on survival times by measuring the lifetime data-based half-normal model. Materials and Methods: The distributions among racial and ethnic groups are compared using female breast cancer patients from nine states in the country all taken from the National Cancer Institute's Surveillance, Epidemiology, and End Results cancer registry. The main end points observed are: age at diagnosis, survival time in months, and marital status. The right skewed half-normal statistical probability model is used to show the differences in the survival times between black Hispanic (BH) and black non-Hispanic (BNH) female breast cancer patients. The Kaplan-Meier and Cox proportional hazard ratio are used to estimate and compare the relative risk of death in two minority groups, BH and BNH. Results: A probability random sample method was used to select representative samples from BNH and BH female breast cancer patients, who were diagnosed during the years of 1973-2009 in the United States. The sample contained 1,000 BNH and 298 BH female breast cancer patients. The median age at diagnosis was 57.75 years among BNH and 54.11 years among BH. The results of the half-normal model showed that the survival times formed positive skewed models with higher variability in BNH compared with BH. The Kaplan-Meir estimate was used to plot the survival curves for cancer patients; this test was positively skewed. The Kaplan-Meier and Cox proportional hazard ratio for survival analysis showed that BNH had a significantly longer survival time as compared to BH which is consistent with the results of the half-normal model. Conclusions: The findings with the proposed model strategy will assist in the healthcare field to measure future outcomes for BH and BNH, given their past history and conditions. These findings may provide an enhanced and improved outlook for the diagnosis and treatment of breast cancer patients in the United States.