• 제목/요약/키워드: Kantorovich type operator

검색결과 9건 처리시간 0.025초

ON APPROXIMATION PROPERTIES OF BALAZS-SZABADOS OPERATORS AND THEIR KANTOROVICH EXTENSION

  • Agratini, Octavian
    • Journal of applied mathematics & informatics
    • /
    • 제9권2호
    • /
    • pp.531-542
    • /
    • 2002
  • In this paper we deal with a sequence of positive linear operators ${{R_n}}^{[$\beta$]}$ approximating functions on the unbounded interval [0, $\infty$] which were firstly used by K. balazs and J. Szabados. We give pointwise estimates in the framework of polynomial weighted function spaces. Also we establish a Voronovskaja type theorem in the same weighted spaces for ${{K_n}}^{[$\beta$]}$ operators, representing the integral generalization in Kantorovich sense of the ${{R_n}}^{[$\beta$]}$.

ON A SEQUENCE OF KANTOROVICH TYPE OPERATORS VIA RIEMANN TYPE q-INTEGRAL

  • Bascanbaz-Tunca, Gulen;Erencin, Aysegul;Tasdelen, Fatma
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.303-315
    • /
    • 2014
  • In this work, we construct Kantorovich type generalization of a class of linear positive operators via Riemann type q-integral. We obtain estimations for the rate of convergence by means of modulus of continuity and the elements of Lipschitz class and also investigate weighted approximation properties.

Szász-Kantorovich Type Operators Based on Charlier Polynomials

  • Kajla, Arun;Agrawal, Purshottam Narain
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.877-897
    • /
    • 2016
  • In the present article, we study some approximation properties of the Kantorovich type generalization of $Sz{\acute{a}}sz$ type operators involving Charlier polynomials introduced by S. Varma and F. Taşdelen (Math. Comput. Modelling, 56 (5-6) (2012) 108-112). First, we establish approximation in a Lipschitz type space, weighted approximation theorems and A-statistical convergence properties for these operators. Then, we obtain the rate of approximation of functions having derivatives of bounded variation.

GENERALIZED SYMMETRICAL SIGMOID FUNCTION ACTIVATED NEURAL NETWORK MULTIVARIATE APPROXIMATION

  • ANASTASSIOU, GEORGE A.
    • Journal of Applied and Pure Mathematics
    • /
    • 제4권3_4호
    • /
    • pp.185-209
    • /
    • 2022
  • Here we exhibit multivariate quantitative approximations of Banach space valued continuous multivariate functions on a box or ℝN, N ∈ ℕ, by the multivariate normalized, quasi-interpolation, Kantorovich type and quadrature type neural network operators. We treat also the case of approximation by iterated operators of the last four types. These approximations are achieved by establishing multidimensional Jackson type inequalities involving the multivariate modulus of continuity of the engaged function or its high order Fréchet derivatives. Our multivariate operators are defined by using a multidimensional density function induced by the generalized symmetrical sigmoid function. The approximations are point-wise and uniform. The related feed-forward neural network is with one hidden layer.

PARAMETRIZED GUDERMANNIAN FUNCTION RELIED BANACH SPACE VALUED NEURAL NETWORK MULTIVARIATE APPROXIMATIONS

  • GEORGE A. ANASTASSIOU
    • Journal of Applied and Pure Mathematics
    • /
    • 제5권1_2호
    • /
    • pp.69-93
    • /
    • 2023
  • Here we give multivariate quantitative approximations of Banach space valued continuous multivariate functions on a box or ℝN, N ∈ ℕ, by the multivariate normalized, quasi-interpolation, Kantorovich type and quadrature type neural network operators. We treat also the case of approximation by iterated operators of the last four types. These approximations are derived by establishing multidimensional Jackson type inequalities involving the multivariate modulus of continuity of the engaged function or its high order Fréchet derivatives. Our multivariate operators are defined by using a multidimensional density function induced by a parametrized Gudermannian sigmoid function. The approximations are pointwise and uniform. The related feed-forward neural network is with one hidden layer.

CONVERGENCE OF A CONTINUATION METHOD UNDER MAJORANT CONDITIONS

  • Nisha, Shwet;Parida, P.K.;Kumari, Chandni
    • Korean Journal of Mathematics
    • /
    • 제27권4호
    • /
    • pp.1005-1025
    • /
    • 2019
  • The paper is devoted to study local convergence of a continuation method under the assumption of majorant conditions. The method is used to approximate a zero of an operator in Banach space and is of third order. It is seen that the famous Kantorovich-type and Smale-type conditions are special cases of our majorant conditions. This infers that our result is a generalized one in comparison to results based on Kantorovich-type and Smale-type conditions. Finally a number of numerical examples have been computed to show applicability of the convergence analysis.

CHEYSHEFF-HALLEY-LIKE METHODS IN BANACH SPACES

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • 제4권1호
    • /
    • pp.83-108
    • /
    • 1997
  • Chebysheff-Halley methods are probably the best known cubically convergent iterative procedures for solving nonlinear equa-tions. These methods however require an evaluation of the second Frechet-derivative at each step which means a number of function eval-uations proportional to the cube of the dimension of the space. To re-duce the computational cost we replace the second Frechet derivative with a fixed bounded bilinear operator. Using the majorant method and Newton-Kantorovich type hypotheses we provide sufficient condi-tions for the convergence of our method to a locally unique solution of a nonlinear equation in Banach space. Our method is shown to be faster than Newton's method under the same computational cost. Finally we apply our results to solve nonlinear integral equations appearing in radiative transfer in connection with the problem of determination of the angular distribution of the radiant-flux emerging from a plane radiation field.

GENERALIZED CONDITIONS FOR THE CONVERGENCE OF INEXACT NEWTON-LIKE METHODS ON BANACH SPACES WITH A CONVERGENCE STRUCTURE AND APPLICATIONS

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • 제5권2호
    • /
    • pp.433-448
    • /
    • 1998
  • In this study we use inexact Newton-like methods to find solutions of nonlinear operator equations on Banach spaces with a convergence structure. Our technique involves the introduction of a generalized norm as an operator from a linear space into a par-tially ordered Banach space. In this way the metric properties of the examined problem can be analyzed more precisely. Moreover this approach allows us to derive from the same theorem on the one hand semi-local results of kantorovich-type and on the other hand 2global results based on monotonicity considerations. By imposing very general Lipschitz-like conditions on the operators involved on the other hand by choosing our operators appropriately we can find sharper error bounds on the distances involved than before. Furthermore we show that special cases of our results reduce to the corresponding ones already in the literature. Finally our results are used to solve integral equations that cannot be solved with existing methods.

APPROXIMATING SOLUTIONS OF EQUATIONS BY COMBINING NEWTON-LIKE METHODS

  • Argyros, Ioannis K.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제15권1호
    • /
    • pp.35-45
    • /
    • 2008
  • In cases sufficient conditions for the semilocal convergence of Newtonlike methods are violated, we start with a modified Newton-like method (whose weaker convergence conditions hold) until we stop at a certain finite step. Then using as a starting guess the point found above we show convergence of the Newtonlike method to a locally unique solution of a nonlinear operator equation in a Banach space setting. A numerical example is also provided.

  • PDF