Lee Jung-Hoon;Lee Hyun-Sook;Lee Young-Hee;Yoon Young-Ro
Journal of Biomedical Engineering Research
/
v.27
no.3
/
pp.131-141
/
2006
A visual decision by clinical experts like physical therapists is a best way to detect onset and offset time of muscle activation. The current computer-based algorithms are being researched toward similar results of clinical experts. The new algorithm in this paper has an ability to extract a trend from noisy input data. Kalman smoother is used to recognize the trend to be revealed from disorderly signals. Histogram of smoothed signals by Kalman smoother has a clear boundary to separate muscle contractions from relaxations. To verify that the Kalman smoother algorithm is reliable way to detect onset and offset time of muscle contractions, the algorithm of Robert P. Di Fabio (published in 1987) is compared with Kalman smoother. For 31 templates of subjects, an average and a standard deviation are compared. The average of errors between Di Fabio's algorithm and experts is 109 milliseconds in onset detection and 142 milliseconds in offset detection. But the average between Kalman smoother and experts is 90 and 137 milliseconds in each case. Moreover, the standard deviations of errors are 133 (onset) and 210 (offset) milliseconds in Di Fabio's one, but 48 (onset) and 55 (offset) milliseconds in Kalman smoother. As a result, the Kalman smoother is much closer to determinations of clinical experts and more reliable than Di Fabio's one.
Journal of Institute of Control, Robotics and Systems
/
v.18
no.5
/
pp.471-478
/
2012
A foot motion is estimated using an inertial sensor unit, which is installed on a shoe. The inertial sensor unit consists of 3 axis accelerometer and 3 axis gyroscopes. Attitude and position of a foot are estimated using an inertial navigation algorithm. To increase estimation performance, a smoother is used, where the smoother employs a forward and backward filter structure. An indirect Kalman filter is used as a forward filter and backward filter. A new combining algorithm for the smoother is proposed to combine a forward indirect Kalman filter and a backward indirect Kalman filter. Through experiments, the estimation performance of the proposed smoother is verified.
Journal of the Korean Association of Geographic Information Studies
/
v.13
no.2
/
pp.157-167
/
2010
Unscented Kalman filter based backward filter is derived and the positions from extended Kalman filter, unscented Kalman filter, and extended Kalman smoother are compared and analyzed through a simulation test. Considering the poor GPS signal reception, the simulation is performed under the assumption of only the start and end points of the trajectory, composed of 4 curves and 5 straight sections in the area of $40m{\times}40m $, are known. The test shows that the smoothers generate much better positioning results of 8~9m improvement compared to those from the forward filters. For the comparison between the smoothers, the analysis is performed separately for the curves and straight segments. In both cases, the unscented Kalman smoother generates better positioning error; 10cm and 23cm improved positioning results in straight segment and curves, respectively.
The extended Kalman filter (EKF) is widely used for global navigation satellite system (GNSS) applications. It is difficult to obtain precise positions with an EKF one-way (forward or backward) filter. In this paper, we propose an EKF smoother to improve the positioning accuracy by integrating forward and backward filters. For the EKF smoother experiment, we performed PPP using GNSS data received at the DAEJ reference station for a month. The effectiveness of the proposed approach is validated with multi-GNSS kinematic PPP experiments. The EKF smoother showed 35%, 6%, and 22% improvement in east, north, and up directions, respectively. In addition, accurate tropospheric zenith total delay (ZTD) values were calculated by a smoother. Therefore, the results from EKF smoother demonstrate that better accuracy of position can be achieved.
This paper deals with the problem of estimating structure and motion from long continuous image sequences, applying the Expectation Maximization algorithm based on extended Kalman smoother to impose the time-continuity of the motion parameters. By repeatedly estimating the state transition matrix of the dynamic equation and the parameters of noise processes in the dynamic and measurement equations, this optimization gives the maximum likelihood estimates of the motion and structure parameters. Practically, this research is essential for dealing with a long video-rate image sequence with partially unknown system equation and noise. The algorithm is implemented and tested for a real image sequence.
Journal of Institute of Control, Robotics and Systems
/
v.21
no.9
/
pp.807-810
/
2015
In this paper, a finite impulse response(FIR) fixed-lag smoother is proposed for discrete-time nonlinear systems. If the actual state trajectory is sufficiently close to the nominal state trajectory, the nonlinear system model can be divided into two parts: The error-state model and the nominal model. The error state can be estimated by adapting the optimal time-varying FIR smoother to the error-state model, and the nominal state can be obtained directly from the nominal trajectory model. Moreover, in order to obtain more robust estimates, the linearization errors are considered as a linear function of the estimation errors. Since the proposed estimator has an FIR structure, the proposed smoother can be expected to have better estimation performance than the IIR-structured estimators in terms of robustness and fast convergence. Additionally the proposed method can give a more general solution than the optimal FIR filtering approach, since the optimal FIR smoother is reduced to the optimal FIR filter by setting the fixed-lag size as zero. To illustrate the performance of the proposed method, simulation results are presented by comparing the method with an optimal FIR filtering approach and linearized Kalman filter.
In this paper, finite impulse response (FIR) smoothers are proposed for discrete-time systems. The proposed FIR smoother is designed under the constraints of linearity, unbiasedness, FIR structure, and independence of the initial state information. It is also obtained by directly minimizing the performance criterion with unbiased constraints. The approach to the MVF smoother proposed in this paper is logical and systematic, while existing results have heuristic assumption, such as infinite covariance of the initial state. Additionally, the proposed MVF smoother is based on the general system model that may have the singular system matrix and has both system and measurement noises. Thorough simulation studies, it is shown that the proposed MVF smoother is more robust against modeling uncertainties numerical errors than fixed-lag Kalman smoother which is infinite impulse response (IIR) type estimator.
Journal of Institute of Control, Robotics and Systems
/
v.8
no.11
/
pp.984-990
/
2002
We propose a new type of nonlinear fixed interval smoother to which an existing nonlinear smoother is modified. The nonlinear smoother is derived from two-filter formulas. For the backward filter. the propagation and the update equation of error states are derived. In particular, the modified update equation of the backward filter uses the estimated error terms from the forward filter. Data fusion algorithm, which combines the forward filter result and the backward filter result, is altered into the compatible form with the new type of the backward filter. The proposed algorithm is more efficient than the existing one because propagation in backward filter is very simple from the implementation point of view. We apply the proposed nonlinear smoothing algorithm to off-line navigation system and show the proposed algorithm estimates position, and altitude fairly well through the computer simulation.
Journal of Institute of Control, Robotics and Systems
/
v.20
no.1
/
pp.1-5
/
2014
In this paper, we propose an optimal fixed-lag FIR (Finite-Impulse-Response) smoother for a class of discrete time-varying state-space signal models. The proposed fixed-lag FIR smoother is linear with respect to inputs and outputs on the recent finite horizon and estimates the delayed state so that the variance of the estimation error is minimized with the unbiased constraint. Since the proposed smoother is derived with system inputs, it can be adapted to feedback control system. Additionally, the proposed smoother can give more general solution than the optimal FIR filter, because it reduced to the optimal FIR filter by setting the fixed-lag size as zero. A numerical example is presented to illustrate the performance of the proposed smoother by comparing with an optimal FIR filter and a conventional fixed-lag Kalman smoother.
Journal of the Society of Naval Architects of Korea
/
v.38
no.4
/
pp.30-38
/
2001
The current is considered in the conventional manoeuvering equation. This equation is represented as the nonlinear state and measurement equations in which external forces and the direction and the velocity of current are augmented as that variables. The external forces are modeled as the third-order Gauss-Markov processes and the direction and the velocity of current are assumed to be constant. The augmented state variables are estimated with extended Kalman-Bucy filter and the fixed-interval smoother. While Hwang estimated motion state variables, hydrodynamic coefficients and the current variables simultaneously by using extended Kalman filter, external forces of surge, sway and yaw and the direction and the velocity of current are the only parameters to be estimated in the estimation-before-modeling method. The current variables are satisfactorily estimated in simulation process where the measurement noise is present.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.