• Title/Summary/Keyword: Kalman

Search Result 2,361, Processing Time 0.028 seconds

Localization on WSN Using Fuzzy Model and Kalman Filter (퍼지 모델링과 칼만 필터를 이용한 WSN에서의 위치 측정)

  • Kim, Jong-Seon;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2047-2051
    • /
    • 2009
  • In this paper, we propose the localization method on WSN(Wireless Sensor Network) using fuzzy model and Kalman filter. The proposed method is as follows: First, we estimate the distance of RSSI(Receive Signal Strength Index) by using fuzzy model in order to minimize the distance error. Second, we use a triangulation measurement for estimating the localization. And then, we minimize the localization error using a Kalman filter. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

Tracking of 2D or 3D Irregular Movement by a Family of Unscented Kalman Filters

  • Tao, Junli;Klette, Reinhard
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.307-314
    • /
    • 2012
  • This paper reports on the design of an object tracker that utilizes a family of unscented Kalman filters, one for each tracked object. This is a more efficient design than having one unscented Kalman filter for the family of all moving objects. The performance of the designed and implemented filter is demonstrated by using simulated movements, and also for object movements in 2D and 3D space.

Attitude Estimation using Adaptive Extended Kalman Filter (적응 확장 칼만 필터를 이용한 3차원 자세 추정)

  • Suh, Young-Soo;Shin, Yeong-Hun;Park, Sang-Kyeong;Kang, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.41-43
    • /
    • 2004
  • This paper is concerned with attitude estimation using low cost, small-sized accelerometers and gyroscopes. A two step extended Kalman filter is proposed, which adaptively compensates external acceleration. External acceleration is the main source of estimation error. In the proposed filter, direction of external acceleration is estimated. According to the estimated direction, the accelerometer measurement covariance matrix of the two step extended Kalman filter is adjusted. The proposed algorithm is verified through experiments.

  • PDF

Design of Robust Fuzzy-Logic Tracker for Noise and Clutter Contaminated Trajectory based on Kalman Filter

  • Byeongil Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_1
    • /
    • pp.249-256
    • /
    • 2024
  • Traditional methods for monitoring targets rely heavily on probabilistic data association (PDA) or Kalman filtering. However, achieving optimal performance in a densely congested tracking environment proves challenging due to factors such as the complexities of measurement, mathematical simplification, and combined target detection for the tracking association problem. This article analyzes a target tracking problem through the lens of fuzzy logic theory, identifies the fuzzy rules that a fuzzy tracker employs, and designs the tracker utilizing fuzzy rules and Kalman filtering.

Study on Improvement of Target Tracking Performance for RASIT(RAdar of Surveillance for Intermediate Terrain) Using Active Kalman filter (능동형 Kalman filter를 이용한 지상감시레이더의 표적탐지능력 향상에 관한 연구)

  • Myung, Sun-Yang;Chun, Soon-Yong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.52-58
    • /
    • 2009
  • If a moving target has a linear characteristics, the Kalman filter can estimate relatively accurate the location of a target, but this performance depends on how the dynamic status characteristics of the target is accurately modeled. In many practical problems of tracking a maneuvering target, a simple kinematic model can fairly accurately describe the target dynamics for a wide class of maneuvers. However, since the target can exhibit a wide range of dynamic characteristics, no fixed SKF(Simple Kalman filter) can be matched to estimate, to the required accuracy, the states of the target for every specific maneuver. In this paper, a new AKF(Active Kalman filter) is proposed to solve this problem The process noise covariance level of the Kalman filter is adjusted at each time step according to the study result which uses the neural network algorithm. It is demonstrated by means of a computer simulation that the tracking capability of the proposed AKF(Active Kalman filter) is better than that of the SKF(Simple Kalman Filter).

Filtering Performance Analyizing for Relative Navigation Using Single Difference Carrier-Phase GPS (GPS 신호의 단일차분을 이용한 편대위성의 상대위치 결정을 위한 필터링 성능 분석)

  • Park, In-Kwan;Park, Sang-Young;Choi, Kyu-Hong;Choi, Sung-Ki;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.283-290
    • /
    • 2008
  • Satellite formation flying can provide the platform for interferometric observation to acquire the precise data and ensure the flexibility for space mission. This paper presents development and verification of an algorithm to estimate the baseline between formation flying satellites. To estimate a baseline(relative navigation) in real time, EKF(Extended Kalman Filter) and UKF(Unscented Kalman Filter) are used. Measurements for updating a state-vector in Kalman Filter are GPS single difference data. In results, The position errors in estimated baseline are converged to less than ${\pm}1m$ in both EKF and UKF. And as using the two types of Kalman filter, it is clear that the unscented Kalman filter shows a relatively better performance than the extended Kalman filter by comparing an efficiency to the model which has a non-linearity.

REAL-TIME TRAJECTORY ESTIMATION OF SPACE LAUNCH VEHICLE USING EXTENDED KALMAN FILTER AND UNSCENTED KALMAN FILTER (확장칼만필터와 UNSCENTED 칼만필터를 이용한 우주발사체의 실시간 궤적추정)

  • Baek, Jeong-Ho;Park, Sang-Young;Park, Eun-Seo;Choi, Kyu-Hong;Lim, Hyung-Chul;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.501-512
    • /
    • 2005
  • This research supposed when a fictitious KSIV-I space launch vehicle launches from NARO space center. This compared and analyzed the results from real-time trajectory estimation using the Extended Kalman Filter and the Unscented Kalman Filter. A virtual trajectory and observation data are generated for the fictitious KSLV-I and three measurement radars. The performances of both Otters are compared for several simulations with small initial errors, large initial errors, 20Hz and 10Hz data rate. The results show that the Unscented Kalman Filter yields faster convergence and more accurate than the Extended Kalman Filter for the cases with larger initial error and slower data rate conditions.

An implementation of INS calibration technique using the velocity initialization (속도오차 초기화를 이용한 관성항법장치 교정기법의 구현)

  • 박정화;김천중;신용진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1679-1683
    • /
    • 1997
  • In this paper a linear Kalman filter for calibration of gimballed inertial navigation system(GINS) is designed and its performace is analyzed through the simulation with a real navigation data. Simulation results show that the proposed Kalman filter gives a good performance to calibrate the sensor errors.

  • PDF

A Krein Space Approach for Robust Extended Kalman Filtering on Mobile Robots in the Presence of Uncertainties

  • Jin, Seung-Hee;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1771-1776
    • /
    • 2003
  • In mobile robot navigation, one of the key problems is the pose estimation of the mobile robot. Although the odometry can be used to describe the motions of the mobile robots quite simple and accurately, the validities of the models are limited by a number of error sources contaminating the encoder outputs so that applying the conventional extended Kalman filter to these nominal model does not yield the satisfactory performance. As a remedy for this problem, we consider the uncertain nonlinear kinematic model of the mobile robot that contains the norm bounded uncertainties and also propose a new robust extended Kalman filter based on the Krein space approach. The proposed robust filter has the same recursive structure as the conventional extended Kalman filter and can hence be readily designed to effectively account for the uncertainties. The computer simulations will be given to verify the robustness against the parameter variation as well as the reliable performance of the proposed robust filter.

  • PDF

A Learning Algorithm for a Recurrent Neural Network Base on Dual Extended Kalman Filter (두개의 Extended Kalman Filter를 이용한 Recurrent Neural Network 학습 알고리듬)

  • Song, Myung-Geun;Kim, Sang-Hee;Park, Won-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.349-351
    • /
    • 2004
  • The classical dynamic backpropagation learning algorithm has the problems of learning speed and the determine of learning parameter. The Extend Kalman Filter(EKF) is used effectively for a state estimation method for a non linear dynamic system. This paper presents a learning algorithm using Dual Extended Kalman Filter(DEKF) for Fully Recurrent Neural Network(FRNN). This DEKF learning algorithm gives the minimum variance estimate of the weights and the hidden outputs. The proposed DEKF learning algorithm is applied to the system identification of a nonlinear SISO system and compared with dynamic backpropagation learning algorithm.

  • PDF