Since GNSS is easily affected by jamming and/or spoofing, alternative navigation systems can be operated as backup system to prepare for outage of GNSS. Alternative navigation systems are being researched over the world, and a multi-radio integrated navigation system using alternative navigation systems such as KNSS, eLoran, Loran-C, DME, VOR has been researched in Korea. Least Square or Kalman filter can be used to estimate navigation parameters in the navigation system. A large number of measurements of the Kalman filter may lead to heavy computational load. The decentralized Kalman filter and the federated Kalman filter were proposed to handle this problem. In this paper, the decentralized Kalman filter and the federated Kalman filter are designed for the multi-radio integrated navigation system and the performance evaluation result are presented. The decentralized Kalman filter and the federated Kalman filter consists of local filters and a master filter. The navigation parameter is estimated by local filters and master filter compensates navigation parameter from the local filters. Characteristics of three Kalman filters for a linear system and nonlinear system are investigated, and the performance evaluation results of the three Kalman filters for multi-radio integrated navigation system are compared.
본 논문에서는 비선형성을 가지는 측정방정식의 상태값을 효과적으로 추정할 수 있는 확장칼만필터(Extended Kalman Filter/EKF)와 확장칼만필터의 변종들 그리고 코스트 레퍼런스 파티클필터(Cost-Reference Particle Filter/CRPF)를 이용하여 이차원 공간에서 표적추적 성능에 관하여 연구한다. 확장칼만필터의 변종으로 분산점칼만필터(Unscented Kalman Filter/UKF), 중심차분칼만필터(Central Difference Kalman Filter/CDKF), 제곱근 분산점칼만필터(Square Root Unscented Kalman Filter/SR-UKF) 그리고 제곱근 중심차분칼만필터(Square Root Central Difference Kalman Filter/SR-CDKF)를 소개한다. 본 연구에서는 노이즈가 불확실한 표적에 대하여 몬테카를로 시뮬레이션 기법을 이용하여 각 필터들의 평균제곱오차(Mean Square Error/MSE)를 계산하였다. 시뮬레이션 결과 확장칼만필터의 변종들 중에서 제곱근 중심차분칼만필터가 속도와 성능 면에서 가장 우수한 결과를 보여주었다. 코스트 레퍼런스 파티클 필터는 확장칼만필터와 다르게 노이즈의 확률 분포를 알 필요가 없다는 유리한 특성을 가지고 있으며 시뮬레이션 결과 제곱근 중심차분칼만필터보다 처리속도 및 정확도 면에서 우수한 결과를 보여주었다.
Since Kalman filter and wavelet transform techniques are both suitable for a nonstationary process, wavelet-Kalman filter was proposed and applied to various industrial fields. However, the wavelet-Kalman filter subjected to model uncertainty with nonstationary process has not been considered. Thus, the robust wavelet-Kalman filter method is proposed in this paper. The proposed method can prevent the degradation of filter performance when parameter uncertainty exists in both the state and measurement matrices and preserve the merits of the standard Kalman filter in the sense that it produces optimal estimates. A simple example shows that the proposed approach outperforms the standard Kalman filter and the nominal wavelet-Kalman filter.
본 연구에서는 G/R 비의 실시간 결정을 목적으로 Dual Kalman Filter를 이용하였다. Dual Kalman Filter 는 이중추정(dual estimation)을 기반으로 하는 자료동화기법으로 기존 Kalman Filter와 상이한 상태-공간 모형으로 구성된다. 이에 Dual Kalman Filter와 기존 Kalman Filter의 적용성능을 비교 검토하였으며, 다양한 비교를 위하여 강우의 임계치와 누적시간의 고려여부에 따른 결과를 추가적으로 검토하였다. 두 기법의 적용성능 비교결과 Dual Kalman Filter가 우수한 것으로 나타났다. 이는 Dual Kalman Filter 기법이 G/R 비의 큰 변동성과 이상치를 효과적으로 필터링하고, 시계열 모형의 매개변수를 실시간으로 갱신하여 정확한 예측치를 추정하였기 때문인 것으로 판단된다.
The purpose of this study is to develop a linear reservoir model with Kalman filter using Kalman filter theory which removes a physical uncertainty of :ainfall-runoff process. A linear reservoir model, which is the basic model of Kalman filter, is used to calculate runoff from rainfall in river basin. A linear reservoir model with Kalman filter is composed of a state-space model using a system model and a observation model. The state-vector of system model in linear. The average value of the ordinate of IUH for a linear reservoir model with Kalman filter is used as the initial value of state-vector. A .linear reservoir model with Kalman filter shows better results than those by linear reserevoir model, and decreases a physical uncertainty of rainfall-runoff process in river basin.
This paper proposes a parallel reduced-order square-root unscented Kalman filter for state estimation of a sensorless permanent-magnet synchronous motor. The appearance of an unscented Kalman filter is caused by the linearization process error between a real system and classical Kalman model. The unscented transformation can make a more accurate Kalman model. However, the complexity is its main drawback. This paper investigates the design and implementation of the proposed filter with Potter and Carlson square-root form. The proposed parallel reduced-order square-root unscented Kalman filter reduces memory and code size, and improves numerical computation. And the performance is not significantly different from the unscented Kalman filter. The experimentation is performed for the verification of the proposed filter.
In this paper, we investigate an improved mobile robot localization method using Kalman filter. The highlight of the paper lies in the formulation of combined Kalman filter and its application to mobile robot experiment. The combined Kalman filter is a kind of extended Kalman filter which has an extra degree of freedom in Kalman filtering recursion. It consists of the standard Kalman filter, i.e., the predictor-corrector and the perturbation estimator which reconstructs unknown dynamics in the state transition equation of mobile robot. The combined Kalman filter (CKF) enables to achieve robust localization performance of mobile robot in spite of heavy perturbation such as wheel slip and doorsill crossover which results in large odometric errors. Intrinsically, it has the property of integrating the innovation in Kalman filtering, i.e., the difference between measurement and predicted measurement and thus it is so much advantageous in compensating uncertainties which has not been reflected in the state transition model of mobile robot. After formulation of the CKF recursion equation, we show how the design parameters can be determined and how much beneficial it is through simulation and experiment for a two-wheeled mobile robot under indoor GPS measurement system composed of four ultrasonic satellites. In addition, we discuss what should be considered and what prerequisites are needed to successfully apply the proposed CKF in mobile robot localization.
본 논문에서는 Glover-Doyle의 H$\infty$ 설계기법을 이용하여 H$\infty$ 성능경계를 만족하는 Kalman 필터를 설계하는 방법을 제시한다. 제시한 방법을 사용하면, kalman 필터의 성능 강인성과 안정화 강인성 문제와의 관계를 설계변수의 설정으로 설계자가 적절하게 선택함으로써 구조적 불확실성에 대하여 비교적 강인한 H$\infty$ -norm Kalman 필터를 설계할 수 있도록 한다. 설계의 예를 통하여 H$\infty$ -norm Kalman 필터의 설게방법을 보이고, H2-norm Kalman 필터와 비교함으로써 제시된 방법이 특성을 보인다.
Kalman filter를 필터링에 적용할 때에 센서의 아날로그 신호에 들어오는 측정값의 잡음은 Gaussian 확률분포를 갖는다고 가정한다. 그러나 Kalman filter를 digital 컴퓨터에 적용할 경우에는 analog-to-digital converter에서 측정값의 잡음이외에도 quantization 잡음이 존재하며 본 논문에서는 이러한 경우에 quantization 영향이 Kalman filter 알고리듬에 미치는 영향을 수치적으로 분석하여 quantization을 Kalman filter 구현에 고려해야 될 사항으로 분류하고자 한다.
Communications for Statistical Applications and Methods
/
제25권1호
/
pp.99-107
/
2018
This article considers a robust Kalman filter from the M-estimation point of view. Pak (Journal of the Korean Statistical Society, 27, 507-514, 1998) proposed a particular M-estimating function which has the data-based shaping constants. The Kalman filter with the proposed M-estimating function is considered. The structure and the estimating algorithm of the Kalman filter accompanying the M-estimating function are mentioned. Kalman filter estimates by the proposed M-estimating function are shown to be well behaved even when data are contaminated.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.