• Title/Summary/Keyword: Kainic acid-induced epilepsy

Search Result 11, Processing Time 0.036 seconds

The Neuroprotective Effect of Acupuncture Treatment at Shaofu (HT8) on Kainic Acid-induced Epilepsy Mouse Model. (Kainic acid 유발 간질 생쥐모델에서 소부혈(少府穴) 침치료의 해마 신경세포 보호효과연구)

  • Kim, Yoon-Young;Min, Sang-Yeon;Kim, Ji-Yong;Kim, Jang-Hyun
    • The Journal of Korean Medicine
    • /
    • v.31 no.5
    • /
    • pp.167-178
    • /
    • 2010
  • Objectives: The present study investigated the effects of acupuncture treatment and their mechanism by using the kainic acid (KA)-induced epilepsy mouse model. Materials and Methods: The seizure was induced by an intraperitoneal (i.p.) injection of 30 mg/kg KA, and the acupuncture treatment was subsequently administered to acupoint Shaofu(HT8) bilaterally with two pretreatment sessions before injection (total 3 times over 3 days). Twenty four hours after injection, we observed the survival of neuronal cells in the CA3 region of the hippocampus. In addition, the activation of microglia and astrocytes was observed by using CD11b and GFAP immunohistochemistry in the same region. Results: The results indicate that acupuncture treatment reduced the rate of neural cell death in the CA3 region of the hippocampus and decreased the activations of microglia and astrocytes in this region. Conclusion: These results demonstrate that acupuncture treatment protects hippocampal neuronal cell death from KA-induced epileptic seizure by inhibiting the activations of microglia and astrocytes.

Gintonin, a Panax ginseng-derived LPA receptor ligand, attenuates kainic acid-induced seizures and neuronal cell death in the hippocampus via anti-inflammatory and anti-oxidant activities

  • Jong Hee Choi;Tae Woo Kwon;Hyo Sung Jo;Yujeong Ha;Ik-Hyun Cho
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.390-399
    • /
    • 2023
  • Background: Gintonin (GT), a Panax ginseng-derived lysophosphatidic acid receptor (LPAR) ligand, has positive effects in cultured or animal models for Parkinson's disease, Huntington's disease, and so on. However, the potential therapeutic value of GT in treating epilepsy has not yet been reported. Methods: Effects of GT on epileptic seizure (seizure) in kainic acid [KA, 55mg/kg, intraperitoneal (i.p.)]-induced model of mice, excitotoxic (hippocampal) cell death in KA [0.2 ㎍, intracerebroventricular (i.c.v.)]-induced model of mice, and levels of proinflammatory mediators in lipopolysaccharide (LPS)-induced BV2 cells were investigated. Results: An i.p. injection of KA into mice produced typical seizure. However, it was significantly alleviated by oral administration of GT in a dose-dependent manner. An i.c.v. injection of KA produced typical hippocampal cell death, whereas it was significantly ameliorated by administration of GT, which was related to reduced levels of neuroglial (microglia and astrocyte) activation and proinflammatory cytokines/enzymes expression as well as increased level of the Nrf2-antioxidant response via the upregulation of LPAR 1/3 in the hippocampus. However, these positive effects of GT were neutralized by an i.p. injection of Ki16425, an antagonist of LPA1-3. GT also reduced protein expression level of inducible nitric-oxide synthase, a representative proinflammatory enzyme, in LPS-induced BV2 cells. Treatment with conditioned medium clearly reduced cultured HT-22 cell death. Conclusion: Taken together, these results suggest that GT may suppress KA-induced seizures and excitotoxic events in the hippocampus through its anti-inflammatory and antioxidant activities by activating LPA signaling. Thus, GT has a therapeutic potential to treat epilepsy.

Antiepileptic and anti-neuroinflammatory effects of red ginseng in an intrahippocampal kainic acid model of temporal lobe epilepsy demonstrated by electroencephalography

  • Kim, Ju Young;Kim, Jin Hyeon;Lee, Hee Jin;Kim, Sang Hoon;Jung, Young Jin;Lee, Hee-Young;Kim, Hee Jaung;Kim, Sae Yoon
    • Journal of Yeungnam Medical Science
    • /
    • v.35 no.2
    • /
    • pp.192-198
    • /
    • 2018
  • Background: Chronic inflammation can lower the seizure threshold and have influence on epileptogenesis. The components of red ginseng (RG) have anti-inflammatory effects. The abundance of peripherally derived immune cells in resected epileptic tissue suggests that the immune system is a potential target for anti-epileptogenic therapies. The present study used continuous electroencephalography (EEG) to evaluate the therapeutic efficacy of RG in intrahippocampal kainic acid (IHKA) animal model of temporal lobe epilepsy. Methods: Prolonged status epilepticus (SE) was induced in 7-week-old C57BL/6J mice via stereotaxic injection of kainic acid (KA, 150 nL; 1 mg/mL) into the right CA3/dorsal hippocampus. The animals were implanted electrodes and monitored for spontaneous seizures. Following the IHKA injections, one group received treatments of RG (250 mg/kg/day) for 4 weeks (RG group, n=7) while another group received valproic acid (VPA, 30 mg/kg/day) (VPA group, n=7). Laboratory findings and pathological results were assessed at D29 and continuous (24 h/week) EEG monitoring was used to evaluate high-voltage sharp waves on D7, D14, D21, and D28. Results: At D29, there were no differences between the groups in liver function test but RG group had higher blood urea nitrogen levels. Immunohistochemistry analyses revealed that RG reduced the infiltration of immune cells into the brain and EEG analyses showed that it had anticonvulsant effects. Conclusion: Repeated treatments with RG after IHKA-induced SE decreased immune cell infiltration into the brain and resulted in a marked decrease in electrographic seizures. RG had anticonvulsant effects that were similar to those of VPA without serious side effects.

Anti-convulsant Effects of Methanol Extract of Gastrodia Elata on Kainic Acid-induced Epilepsy Mouse Model (Kainic acid로 유도된 생쥐의 간질 발작에 대한 천마 메탄올 추출물의 항경련 효과 연구)

  • Jang, Jung Hee;Bae, Chang-Hwan;Kim, Hyungwoo;Kim, Seungtae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.6
    • /
    • pp.614-620
    • /
    • 2014
  • Kainic acid (KA) is a excitatory agonist causing epileptic seizure and excitotoxicity in the hippocampus. Gastrodia Elata (GE) is known to have anti-convulsant and anti-oxidant effects. This study was investigated a possible role of GE in suppressing epileptic seizure using KA-induced epilepsy mouse model. Eight-week-old male C57BL/6 mice were administrated GE (50 or 500 mg/kg) once a day for 5 days, and then injected KA (30 mg/kg) intraperitoneally. Behavioral changes in mice by KA were evaluated for 90 minutes immediately after the KA administration. Six hours after the KA administration, their brains were harvested and the expressions of glutamate decarboxylase 67 (GAD-67) and K+-Cl- cotransporter 2 (KCC2) in the hippocampus of the mice were measured by immunohistochemistry.GE delayed the onset of epileptic seizure after KA administration, suppressed the severity of the seizure and decreased the number of severe seizures dose dependently. Moreover, GAD-67 and KCC2 expressions in the cornu ammonis (CA) 1 and CA3 of 500 mg/kg GE administrated mice were significantly increased compared to those in KA-treated mice.GAD-67 and KCC2 play an important role in regulating GABAergic system. Our results suggest that GE has anti-convulsant effect against KA-induced epileptic seizure through enhancing GABAergic system.

Acupuncture Treatment at HT8 Protects Hippocampal Cells in Dentate Gyrus on Kainic Acid-Induced Epilepsy Mice Model (소부혈(少府穴) 자침(刺鍼)이 Kainic Acid로 유도(誘導)된 간질(癎疾) 동물(動物) 모델의 해마(海馬) 치상회(齒狀回)에 미치는 영향(影響))

  • Kim, Seung-Tae;Chung, Joo-Ho;Jeong, Wu-Byung;Kim, Jang-Hyun;Kang, Min-Jung;Hong, Mee-Sook;Park, Hae-Jeong;Kim, Yeon-Jung;Park, Hi-Joon;Lee, Hye-Jeong
    • Korean Journal of Acupuncture
    • /
    • v.24 no.4
    • /
    • pp.99-110
    • /
    • 2007
  • Objectives : Epilepsy is one of the most common serious brain disorders that affect people of all ages, and it is characterized by recurrent unprovoked seizures. We examined whether acupuncture can reduce both the incidence of seizures and hippocampal cell death in dentate gyrus (DG) using a mouse model of kainic acid (KA)-induced epilepsy. Methods : ICR mice ($20{\sim}25$ g) were given acupuncture once a day at acupoint HT8 (sobu) bilaterally during 2 days before KA injection. After an intracerebroventricular injection of 0.1${\mu}g$ of KA, acupuncture treatment was subsequently administered once more (total 3 times), and the degree of seizure was observed for 20 min. Three hours after injection, we confirmed the neural cell death using cresyl violet staining and silver impregnation staining, and determined the expressions of c-Fos and glutamate decarboxylase (GAD)-67 using immunohistochemistry techniques in the DG. Results : KA induced epileptic seizure, neural cell death, increased c-Fos expression and decreased GAD-67 expression in the DG. Acupuncture treatment at HT8 reduced the severity of the epileptic seizure and inhibited neural cell death from KA. In addition, acupuncture normalized the expressions of c-Fos and GAD-67 in the same areas. Conclusions : These results demonstrated that acupuncture treatment at HT8 may reduce the KA-induced epileptic seizure and neural cell death in the DG possibly by normalizing c-Fos expressions and the gamma-aminobutyric acid neurons.

  • PDF

Effects of Yuldahansotang after kainate administration in the mouse hippocampus area (열다한소탕(熱多寒少湯)이 kainic acid에 의해 유발된 mouse의 해마체 손상에 미치는 영향)

  • Kim, Il-hwan;Kim, Kyung-yo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.11 no.2
    • /
    • pp.283-299
    • /
    • 1999
  • 1. Purpose : Systemic injection of kainic acid in experimental animals induces the limbic seizure and structural damages in hippocampus and amygdala which resembles the changes in human temporal lobe epilepsy. The author performed this study to investigate the neuroprotective effects of Yuldahansotang, on the neurotoxicity induced by kainic acid in the hippocampus in rats. 2. Method : Kainic acid was administered intraperitoneally. And feeding with Yuldahansotang for 3 weeks after kainic acid administration. Seizure were induced in male mice (kainate 10-40 mg/kg i.p) and animals were sacrified at various time-points after injection. The experimental animals were sacrificed at 1, 2, 3day and 1, 3weeks while Yuldahansotang administrations. Seizure were graded using a behavioral scale developed in our laboratory. c-fos belong to immediate early genes(IEGs) known to have rapid and brief responses. And neuronal injury was assayed by examining DNA fragmentation using in situ nick translation histochemistry. 3. Results & Conclusion : Seizure severity paralled kainate dosage. At higher doses DNA fragmentation is seen mainly in hippocampus in area CA3, and variable in CA1, thalamus, amygdala within 24 h, is maximal within 72 h, and is large gene by 7 days after administration of kainate. And we can't see the expression of DNA fragmentation and c-fos in the mice what feeded by Yuldahansotang after 7 days from kainic acid administration. It is consequently suggested that Yuldahansotang may attenuate the kainic acid-induced neuronal degeneration and increase the immunoreactivity of hippocampus in mouse.

  • PDF

Acupuncture Stimulation at LI11 Suppresses Seizure and Apoptosis in Hippocampi on an Epilepsy Mouse Model (간질 동물 모델을 이용한 곡지(曲池) 및 족삼리(足三里)의 간질발작 및 해마 신경세포 보호 효과 비교 연구)

  • Lee, Jong Boon;Hwang, Kyoung Min;Yoo, Tae-Won;Bae, Chang-Hwan;Kwon, Sunoh;Kim, Seung-Tae
    • Korean Journal of Acupuncture
    • /
    • v.30 no.1
    • /
    • pp.73-80
    • /
    • 2013
  • Objectives : LI11 has been known to suppress epileptic seizure. Using an mouse epilepsy model, we investigated whether acupuncture stimulation at LI11 can suppress kainic acid(KA)-induced epileptic seizure and apoptosis in the mouse hippocampus. Methods : Eight-week-old male C57/BL6 mice(20~25 g) were given acupuncture at LI11 or ST36 once a day for 3 days. After the last acupuncture stimulations, KA(30 mg/kg) was injected intraperitoneally and the degree of seizure was observed for 90 minutes. Twenty-four hours after KA administration, mice were sacrificed and the neural cell death, astrocyte activation and caspase-3 expression in their hippocampi were investigated. Results : Acupuncture stimulation at LI11 suppressed KA-induced epileptic seizure, neuronal cell death, astrocyte activation and caspase-3 expression. Conclusions : Acupuncture stimulation at LI11 decreases the KA-induced epileptic seizure and protects hippocampal cell death via regulating astrocyte activation and caspase-3 expression.

Modulation of the Expression of the GABAA Receptor β1 and β3 Subunits by Pretreatment with Quercetin in the KA Model of Epilepsy in Mice -The Effect of Quercetin on GABAA Receptor Beta Subunits-

  • Moghbelinejad, Sahar;Rashvand, Zahra;Khodabandehloo, Fatemeh;Mohammadi, Ghazaleh;Nassiri-Asl, Marjan
    • Journal of Pharmacopuncture
    • /
    • v.19 no.2
    • /
    • pp.163-166
    • /
    • 2016
  • Objectives: Quercetin is a flavonoid and an important dietary constituent of fruits and vegetables. In recent years, several pharmacological activities of quercetin, such as its neuroprotective activity and, more specifically, its anti-convulsant effects in animal models of epilepsy, have been reported. This study evaluated the role of quercetin pretreatment on gene expression of ${\gamma}$-amino butyric acid type A ($GABA_A$) receptor beta subunits in kainic acid (KA)-induced seizures in mice. Methods: The animals were divided into four groups: one saline group, one group in which seizures were induced by using KA (10 mg/kg) without quercetin pretreatment and two groups pretreated with quercetin (50 and 100 mg/kg) prior to seizures being induced by using KA. Next, the messenger ribonucleic acid (mRNA) levels of the $GABA_A$ receptor ${\beta}$ subunits in the hippocampus of each animal were assessed at 2 hours and 7 days after KA administration. Quantitative real-time polymerase chain reaction (RT-PCR) assay was used to detect mRNA content in hippocampal tissues. Results: Pretreatments with quercetin at doses of 50 and 100 mg/kg prevented significant increases in the mRNA levels of the ${\beta}_1$ and the ${\beta}_3$ subunits of the $GABA_A$ receptor at 2 hours after KA injection. Pretreatment with quercetin (100 mg/kg) significantly inhibited ${\beta}_1$ and ${\beta}_3$ gene expression in the hippocampus at 7 days after KA injection. But, this inhibitory effect of quercetin at 50 mg/kg on the mRNA levels of the ${\beta}_3$ subunit of the $GABA_A$ receptor was not observed at 7 days after KA administration. Conclusion: These results suggest that quercetin (100 mg/kg) modulates the expression of the $GABA_A$ receptor ${\beta}_1$ and ${\beta}_3$ subunits in the KA model of epilepsy, most likely to prevent compensatory responses. This may be related to the narrow therapeutic dose range for the anticonvulsant activities of quercetin.

Electrobehavioral and Pathological Characteristics in Cerebral Cortical Dysplasia Induced by External Irradiation in the Rat (방사선조사에 의해 피질이형성증 백서의 전기행동학적, 병리조직학적 특징)

  • Choi, Ha-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.7
    • /
    • pp.861-867
    • /
    • 2000
  • Purpose : Neuronal migration disorder(NMD) is a major underlying pathology of patients with intractable epilepsy. The role of NMD on seizure susceptibility or epileptogenecity, however, has not been documented. Methods : External irradiation of total amount of 250 cGY was performed to the fetal rats on days 16(E16) and 17(E17) of gestation. After delivery, the rats of 230-260g were decapitated for the histopathologic study. Epileptog-enecity of the NMD was studied by observing electroclinical events after intraperitoneal kainic acid(KA) injection in the control rats and NMD rats. Results : Histopathologic findings revealed focal and/or diffuse cortical dysplasia consisting of dyslamination of the cerebral cortex and appearance of the cytomegalic neurons, neuronal heterotopia in the periventricular white matter, dispersion of the pyramidal layer and the dentate gyrus of the hippocampus, and agenesis of the corpus callosum. Abnormal expression of neurofilaments protein(NF-M/H) was characteristically observed in the dysplastic neurons of the neocortex and hippocampus. Early ictal onset and prolonged ictal activity on EEG and clinical seizures were observed from the NMD rats unlike with the control rats. Conclusions : Exteranl irradiation on the fetal rats produced NMD. And the rats with NMD were highly susceptible to kainic acid provoked seizures. This animal model would be useful to study the pathophysiology of clinically relevant NMDs.

  • PDF

Acupuncture Treatment at HT8 Supresses Seizure and Inflammation in Hippocampi on an Epilepsy Mice Model (간질(癎疾) 동물(動物) 모델을 이용한 소부혈(少府穴)의 간질발작(癎疾發作) 및 해마(海馬)의 염증(炎症) 억제 효과(效果) 검증(檢證))

  • Doo, Ah-Reum;Kim, Seung-Nam;Yin, Chang-Shik;Kim, Yeon-Jung;Lee, Hye-Jung;Kim, Seung-Tae;Park, Hi-Joon
    • Korean Journal of Acupuncture
    • /
    • v.29 no.3
    • /
    • pp.396-405
    • /
    • 2012
  • Objectives : To confirm whether acupuncture can suppress the degree of seizure and the activation of astrocytes in hippocampi using kainic acid(KA)-induced epilepsy mouse model. Methods : 8 weeks C57BL/6 mice(20~25 g) were given acupuncture once a day at acupoint HT8(Shaofu) bilaterally during 2 days before KA injection. After an intraperitoneal injection of 30 mg/kg KA, acupuncture treatment was subsequently administered once more(total 3 times), and the degree of seizure was observed for 120 min. The neuronal cell death, pERK expression, and astrocyte activation confirmed 1 hour and 24 hours after KA injection. Results : Acupuncture treatment at HT8 suppressed KA-induced epileptic seizure. One hour after KA injection, the pERK expression was increased, which was reduced by the acupuncture treatment. Twenty four hours after injection, the treatment decreased the KA-induced neuronal cell death, the interleukin-$1{\beta}$ expression and the astrocyte activation in the CA3 region of the mouse hippocampus. Conclusions : Acupuncture treatment at HT8 decreases the KA-induced epileptic seizure, the neural cell inflammation and death.