• Title/Summary/Keyword: Kaehler submanifolds

Search Result 35, Processing Time 0.024 seconds

GCR-LIGHTLIKE SUBMANIFOLDS OF INDEFINITE NEARLY KAEHLER MANIFOLDS

  • Kumar, Sangeet;Kumar, Rakesh;Nagaich, R.K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1173-1192
    • /
    • 2013
  • We introduce CR, SCR and GCR-lightlike submanifolds of indefinite nearly Kaehler manifolds and obtain their existence in indefinite nearly Kaehler manifolds of constant holomorphic sectional curvature $c$ and of constant type ${\alpha}$. We also prove characterization theorems on the existence of totally umbilical and minimal GCR-lightlike submanifolds of indefinite nearly Kaehler manifolds.

Totally Umbilical Slant Lightlike Submanifolds of Indefinite Kaehler Manifolds

  • Sachdeva, Rashmi;Kumar, Rakesh;Bhatia, Satvinder Singh
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.503-516
    • /
    • 2017
  • In this paper, we study totally umbilical slant lightlike submanifolds of indefinite Kaehler manifolds. We prove that there do not exist totally umbilical proper slant lightlike submanifolds in indefinite Kaehler manifolds other than totally geodesic proper slant lightlike submanifolds. We also prove that there do not exist totally umbilical proper slant lightlike submanifolds of indefinite Kaehler space forms. Finally, we give a characterization theorem on minimal slant lightlike submanifolds.

SLANT LIGHTLIKE SUBMANIFOLDS OF INDEFINITE NEARLY KAEHLER MANIFOLDS

  • Kumar, Tejinder;Kumar, Sangeet;Kumar, Pankaj
    • Honam Mathematical Journal
    • /
    • v.43 no.2
    • /
    • pp.239-258
    • /
    • 2021
  • In the present paper, we introduce the study of slant lightlike submanifolds of indefinite nearly Kaehler manifolds. After proving some geometric results for the existence of slant lightlike submanifolds of indefinite nearly Kaehler manifolds, we give a non-trivial example of this class of lightlike submanifolds. Then, we derive some conditions for the integrability of the distributions associated with slant lightlike submanifolds of indefinite nearly Kaehler manifolds. Consequently, we study totally umbilical slant lightlike submanifolds of indefinite nearly Kaehler manifolds. Subsequently, we investigate minimal slant lightlike submanifolds of indefinite nearly Kaehler manifolds.

A NOTE ON GCR-LIGHTLIKE WARPED PRODUCT SUBMANIFOLDS IN INDEFINITE KAEHLER MANIFOLDS

  • Kumar, Sangeet;Pruthi, Megha
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.783-800
    • /
    • 2021
  • We prove the non-existence of warped product GCR-lightlike submanifolds of the type K × λ KT such that KT is a holomorphic submanifold and K is a totally real submanifold in an indefinite Kaehler manifold $\tilde{K}$. Further, the existence of GCR-lightlike warped product submanifolds of the type KT × λ K is obtained by establishing a characterization theorem in terms of the shape operator and the warping function in an indefinite Kaehler manifold. Consequently, we find some necessary and sufficient conditions for an isometrically immersed GCR-lightlike submanifold in an indefinite Kaehler manifold to be a GCR-lightlike warped product, in terms of the canonical structures f and ω. Moreover, we also derive a geometric estimate for the second fundamental form of GCR-lightlike warped product submanifolds, in terms of the Hessian of the warping function λ.

CHARACTERIZATIONS ON GEODESIC GCR-LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER STATISTICAL MANIFOLD

  • Rani, Vandana;Kaur, Jasleen
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.432-446
    • /
    • 2022
  • This article introduces the structure of GCR-lightlike submanifolds of an indefinite Kaehler statistical manifold and derives their geometric properties. The characterizations on totally geodesic, mixed geodesic, D-geodesic and D'-geodesic GCR-lightlike submanifolds have also been obtained.

SLANT SUBMANIFOLDS OF QUATERNION KAEHLER MANIFOLDS

  • Sahin, Bayram
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.123-135
    • /
    • 2007
  • This paper has two objectives. The first objective is to study slant submanifolds of quaternion Kaehler manifolds. We give characterization theorems and examples of slant submanifolds. For the second objective, we introduce the notion of semi-slant submanifolds which are different from the definition of N. Papaghiuc [15]. We obtain characterization theorems, examples of semi-slant sub manifolds and investigate the geometry of leaves of distributions which are involved in the definition of semi-slant submanifolds.

GEOMETRY OF HALF LIGHTLIKE SUBMANIFOLDS OF INDEFINITE KAEHLER MANIFOLDS WITH A QUARTER-SYMMETRIC METRIC CONNECTION

  • Gupta, Garima;Kumar, Rakesh
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.979-998
    • /
    • 2020
  • We study totally umbilical real half lightlike submanifolds of indefinite Kaehler manifolds with a quarter-symmetric metric connection. We obtain some conditions for a real half lightlike submanifold of an indefinite Kaehler manifold with a quarter-symmetric metric connection to be a product manifold. We derive the expression for induced Ricci type tensor 𝓡(0,2) and also obtain conditions for 𝓡(0,2) to be symmetric.

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION

  • Jin, Dae Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.515-531
    • /
    • 2018
  • Jin studied lightlike hypersurfaces of an indefinite Kaehler manifold [6, 8] or indefinite trans-Sasakian manifold [7] with a quarter-symmetric metric connection. Jin also studied generic lightlike submanifolds of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection [10]. We study generic lightlike submanifolds of an indefinite Kaehler manifold with a quarter-symmetric metric connection.

HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Jin, Dae Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.119-133
    • /
    • 2017
  • In this paper, we study half lightlike submanifolds of an indefinite Kaehler manifold with a semi-symmetric non-metric connection. First, we characterize the geometry of two types of half lightlike submanifolds of such an indefinite Kaehler manifold. Next, we investigate the geometry of half lightlike submanifolds of an indefinite complex space form with a semi-symmetric non-metric connection.

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A NON-METRIC 𝜙-SYMMETRIC CONNECTION

  • Jin, Dae Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.1047-1065
    • /
    • 2017
  • The notion of a non-metric ${\phi}$-symmetric connection on semi-Riemannian manifolds was introduced by Jin [6, 7]. The object of study in this paper is generic lightlike submanifolds of an indefinite Kaehler manifold ${\bar{M}}$ with a non-metric ${\phi}$-symmetric connection. First, we provide several new results for such generic lightlike submanifolds. Next, we investigate generic lightlike submanifolds of an indefinite complex space form ${\bar{M}}(c)$ with a non-metric ${\phi}$-symmetric connection.