• Title/Summary/Keyword: Ka-band Array Antenna

Search Result 32, Processing Time 0.024 seconds

Performance Verification of Active Phased Array Broadband Antenna in Ka-Band (Ka대역 능동위상배열 광대역 안테나 성능 검증 )

  • Youngwan Kim;Jong-Kyun-Back;Hee-Duck Chae;Ji-Han Joo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.23-30
    • /
    • 2024
  • This paper dedcribes the design. verification, and analysis techniques for an advanced phased array antenna. When applying an active phased array antenna to an aircraft or missile, miniaturization of the array antenna and wide-angle beam steering characteristics can be unavoidable antenna design considerations. In particular, the active reflection coefficient characteristics when electronically steering a wide-angle beam is a design parameter that must be minimized in terms of system survival and system performance. As a radiator suitable for broadband characteristics and wide-angle beam steering, this paper designed an array structure using SFN and minimized the active reflection coefficient according to beam steering of up to 40° based on the spherical coordivate system angle. The bandwidth of the radiator was confirmed to be 3GHz based on active reflection in the Ka-band. In addition, the performance of the actually manufactured 8by8 array antenna wsa analyzed by measuring the single pattern of the radiator through a near-field test, mathematically synthesizing it, and predicting the Tx/TRx beam used in the seeker system.

Design and Fabrication of Ultrawideband Spinning Direction Finding Antenna for Airborne Applications (항공용 초광대역 회전 방향 탐지 안테나 설계 및 제작)

  • Kim, Jeeheung;Ryu, Hongkyun;Park, Young-Ju;Lee, Byungnam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.320-323
    • /
    • 2018
  • Herein, an ultrawideband spinning direction finding (DF) antenna was designed and fabricated for airborne applications. The proposed antenna is designed by dividing the low-band (UHF - L band) and high-band (S - Ka band) antennas to cover the ultrawideband frequency range (UHF - Ka band). For the high-band antenna, an LPDA antenna fed offset-parabolic-reflector antenna is applied. In the low-band antenna, two LPDA antenna elements are arrayed in front of the reflector of the high-band antenna without increasing to the full antenna size. The low- and high-band gains of the fabricated antenna were measured as 8.76 dBi and 24.55 dBi on average, respectively. The antenna was fabricated with the dimensions of 437 mm in diameter and 358 mm in height. Consequently, we confirmed that the designed antenna is appropriate for the spinning DF antenna in terms of the affordable size for installing on an airplane, as well as the high gain and narrow beamwidth.

Ka-band Compact AESA Antenna Unit Design for Seeker

  • Bongmo Kang;Ikjong Bae;Jaesub Han;Youngwan. Kim;Jaehyun Shin;Jihan Joo;Seonghyun Ryu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.330-338
    • /
    • 2024
  • In this paper, a Ka-band high-output active phased array antenna device applicable to small radars and seekers was designed, and the improved performance was studied. The radiation device assembly consists of 1x8 arrangements, and the step flared notch antenna type. It shows low active reflection loss characteristics in broadband, and low loss characteristics by applying the air-strip feeding structure, and is designed to enable beam steering up to 45 degrees. The TRM(transmit receive module) output power is more than 2.0W per channel using GaN HPA in the transmitting path, and satisfies more than 25.0 dB gain and less than 6.0 dB noise figure in the receiving path. Accordingly, the Effective Isotropically Radiated Power(EIRP) of the antenna unit shows the performance of 0.00 dB or more and the receive gain-to-noise temperature ratio(G/T) of 0.00 dB/k or more. For demonstration, we have designed aforementioned planar array antenna which consists of 64 radiating elements having a size within 130 mm x 130 mm x 300 mm and weight of less than 4.9 kg..

Photonic-Assisted Reactive-Near-Field Analysis of a 3 dB-Tapered Ka-Band Array Antenna

  • Lee, Dong-Joon;Kang, Jeong-Jin;Kang, No-Weon;Kim, Wan-Sik;Park, Wee-Sang;Rothwell, Edward J.;Whitaker, John F.
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.1
    • /
    • pp.18-24
    • /
    • 2010
  • A Ka-band microstrip array antenna for wide-range detection of moving targets is analyzed through a photonicassisted reactive-near-field characterization technique. The antenna array employs a 3-dB-tapered feed network to suppress the sidelobe level while retaining a wide azimuth beamwidth for a wide detection range. The relative nearelectric field patterns of the array and its 3-dB-tapered feed lines have been measured using an electro-optic fieldmapping technique for minimally invasive millimeter-wave sensing. A number of typical limitations on the technique, involving bandwidth, low signal-modulation depth, and high laser-induced noise in high-frequency applications, have been overcome by suppressing the carrier portion of the optical interrogation beam.

A Ka-band 8-channel TX Active Module Design for Active Phased Array Antenna (능동위상배열 안테나를 위한 Ka-대역 8채널 송신능동모듈 설계)

  • Jung, Young-Bae
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.135-139
    • /
    • 2013
  • This paper presents the 8-channel active module operated in Ka-band. The module is designed for the mobile satellite communication antenna systems, and the module structure has the merit to minimize the size and weight of the antenna systems by 30% compared with the conventional systems using the active module composed of single channel. This module was designed to be optimally operated by prohibiting the electrical interference among the individual channels. From the test results of the fabricated 8-channel active module, it can be confirmed that the maximum channel gain error is ${\pm}1.3dB$, the minimum channel output power is 21.5dBm, and the maximum gain variation by phase control is ${\pm}1.0dB$.

Development of phase shifter for Ka-band Passive Phase Array Seeker and Seeker Performance Analysis due to the Phase Error of Phase Shifter (Ka-대역 수동위상배열탐색기용 위상 변위기 개발 및 변위기 위상 오차에 의한 탐색기 성능 분석)

  • Kim, Youngwan;Woo, Seon-keol;Kwon, Jun-beom;Kang, Yeon-duk;Park, Jongkuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.149-155
    • /
    • 2019
  • In this paper, phase shifter has been designed and manufactured to apply to passive phase array seeker for Ka-band and its performance was confirmed. It was designed as a key element for conducting electric beam steering by adjusting the phase of the array element. Insertion loss of less than 1.5dB and phase accuracy of less than $10^{\circ}$(RMS) in operation bandwidth of 1GHz were checked. The performance identified by the actual fabrication was further analyzed by applying the beam pattern analysis based on the array synthesis theory. The effect of the final performamnce of the proven phase shifter on the performance and pointing error and angular accuracy of the passive phase array antenna beam pattern was analyzed. Then, the validation of the proposed phase shifter has been made.

Waveguide Broad-Wall Slot Array Monopulse Antenna for Millimeter-Wave Seeker Using Dip Brazing Method (딥 브레이징 제작 기법을 이용한 밀리미터파 탐색기용 도파관 광벽 슬롯 배열 모노펄스 안테나)

  • Baek, Jong-Gyun;Jung, Chae-Hyun;Lee, Kook-Joo;Park, Chang-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.11
    • /
    • pp.1020-1026
    • /
    • 2015
  • In this paper, the design of longitudinal shunt slot array monopulse antenna in the broad wall of waveguide for Ka band millimeter-wave seeker, Dip-Brazing method for fabrication and experiment results are presented. The proposed antenna consists of radiating slots by using Elliot's array synthesis procedure, probe-exciting feed structure for improving the return loss bandwidth and monopulse comparator. Element weigthings in the array have been calculated by continuous Taylor aperture distribution. Also, the simulation tool has been used to characterize the individual isolated slot, which has subsequently been used in Elliot's method to design the slot array efficiently. The designed antenna is fabricated using Dip-Brazing method. The gain of measured antenna is 28.4 dBi. Antenna beamwidth and side lobe levels are similar to the design result we expect.

Design of Ka/Ku Band Frequency Selective Surface with Triple Square Loop Slot Array (삼중 사각 루프 슬롯 배열 형태를 갖는 Ka/Ku 대역 주파수 선택 반사기 설계)

  • 고지환;조영기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1060-1070
    • /
    • 2003
  • The frequency selective surface for use in Ka/Ku band parabolic antenna of domestic satellite communications is proposed. The frequency selective surface structure consists of the infinite periodic arrays of the triple square loop slot element with narrow width on the honeycomb structure of multi-layered dielectric. The frequency selective surface is fabricated and measured. The good agreement is obtained between theory and experiment. It is demonstrated that the frequency selective surface passes 14/12 GHz band wave while reflecting 30/20 GHz band wave as required.

Waveguide Broad-wall Slot Array Antenna Study for Millimeter-Wave Seeker Using Cross Monopulse Axes (십자형 모노펄스 축을 적용한 밀리미터파 탐색기용 도파관 광벽 슬롯 배열 안테나 조립체 연구)

  • Jung, Chae-Hyun;Baek, Jong-Gyun;Lee, Kook-Joo;Park, Chang-Hyun;Kwon, Jun-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.209-215
    • /
    • 2017
  • In this paper, an antenna having 2-axes cross monopulse for Ka band millimeter-wave seeker is designed and antenna performance is verified through vacuum-brazing method for fabrication and measurement. Also, by designing and manufacturing a waveguide circulator the antenna including the circulator is measured. Radiating part of the antenna takes optimized slot lengths and offsets from Elliot's array synthesis procedure using the generic algorithm and feeding part for cross monopulse axes uses the folded waveguide to optimize the S-parameter result. Based on this method, the antenna has 33.3 dBi gain, $3.5^{\circ}{\pm}0.5^{\circ}$ beamwidth, below -23 dB SLL through fabricating and measuring. It is found that antenna characteristics is similar to design results.

Design and Analysis of 45°-Inclined Linearly Polarized Substrate Integrated Waveguide(SIW) Slot Sub-Array Antenna for 35 GHz (45도 선형 편파 발생용 SIW 슬롯 Sub-Array 안테나 설계 및 해석)

  • Kim, Dong-Yeon;Nam, Sangwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.4
    • /
    • pp.357-365
    • /
    • 2013
  • The 4 by 4 series slot sub-array antenna is proposed using substrate integrated waveguide(SIW) technology for 35 GHz of Ka band application. The proposed antenna is realized with multi-layered structure for compact size and easy integration features. 4 by 4 radiating slots are arrayed on top PCB with equal spacing and the feeding SIWs are arranged on middle and bottom PCBs for uniform power distribution. The multi-layered antenna is realized using RT/Duroid 5880 that has dielectric constant of 2.2 and the total antenna size is $750.76mm^2$. The individual parts such as radiators and feeding networks are simulated using full-wave simulator CST MWS. Furthermore, the total sub-array antenna also fabricated and measured the electrical performances such as impedance bandwidth under the criteria of -10 dB(490 MHz), maximum gain(18.02 dBi), sidelobe level(SLL)(-11.0 dB), and cross polarization discrimination (XPD)(-20.16 dB).