• Title/Summary/Keyword: KTX Wheel

Search Result 62, Processing Time 0.043 seconds

Running Stability Analysis on the Tail Car of KTX (KTX 후미 차량의 주행 안정성 해석)

  • Lee Seung-Il;Choi Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.350-355
    • /
    • 2005
  • The running stability and safety of a railway vehicle depends on the design characteristics and the contact condition between wheel and rail. In this paper, numerical simulations using ANSYS and ADAMS were done on the basis of the experimental observations. The results show that 0.6 Hz of the tail car motion is due to the natural mode of car combination of the KTX. The effects of the conicity of wheel and the lateral stiffness of the secondary suspension on the running stability were analyzed numerically using ADAMS/RAIL. The results also show 0.6 Hz as like the experimental observations. And the adoption of the wheel of GV40(${\lambda}=0.025$) brought the sway motion at the tail cars, but XP55(${\lambda}=0.055$) did not when the secondary lateral stiffness of the KTX was greater than 0.3 MN/m.

  • PDF

The Analysis on the Carbody Vibration of Wheel Profiles for KTX (경부고속차량의 차륜답면 형상별 차체진동 분석)

  • Lee Chan-Woo;Kim Jae-Chul;Moon Kyeong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.730-733
    • /
    • 2003
  • In this study, it have been measured the vertical and lateral vibrations of car bodies which have an equivalent conicity of 1/20 and 1/40. Based on the measured data, it is revealed that the wheel, XP-50, which has the equivalent conicity of 1/20 causes the better riding comfort of KTX.

  • PDF

Development of a Wheel/Rail Geometric Contact Simulation Program (차륜/레일 기하학적 접촉 시뮬레이션 프로그램 개발)

  • 한형석;이은호;김재철
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.58-65
    • /
    • 2003
  • Wheel/Rail geometric constraint relationships, such as effective conicity and gravitational stiffness, strongly influence the lateral dynamics of railway vehicles. In general, these geometric contact characteristics are nonlinear functions of the wheelset lateral displacement. There is a need to develop a wheel/rail geometric contact simulation program for wheels and rails with arbitrary profiles for the prediction of the dynamic behavior of railway vehicles. An algorithm to simulate any combination of wheels and rails is employed and a GUI for easy analysis is constructed. The simulation program is applied to KTX which will run on both KTX and conventional rails, two rail standards having different rail profiles. The results show that the two rail systems have different geometric contact characteristic

A Dynamic Analysis of Wheel Forces distribution of KTX locomotive for Interaction of PSC box Girder Bridge (PSC 박스거더 교량의 상호작용에 의한 KTX 동력차의 윤하중 분포 해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Sim, Young-Woo;Yun, Jun-Kwan;Kim, Han-Su
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.680-689
    • /
    • 2011
  • A dynamic analysis procedure is developed to provide a comprehensive estimation of the dynamic response spectrum for locomotive's wheels running over a Pre-Stressed Concrete (PSC) box girder bridge on the Korea high speed railway. The wheel force spectrum with the bridge behavior are analyzed as the dynamic procedure for various running speeds (50~450km/h). The high-speed railway locomotive (KTX) is used as 38-degree of freedom system. Three displacements(vertical, lateral, and longitudinal) and three rotational components (pitching, rolling, and yawing). For one car-body and two bogies as well as five movements except pitching rotation components for four wheel axes forces are considered in the 38-degree of freedom model. Three dimensional frame element is used to model of the PSC box girder bridges, simply supported span length of 40m. The irregulation of rail-way is derived using the exponential spectrum density function under assumption of twelve level tracks conditions based on the normal probability procedure. The dynamic responses of bridge passing through the railway locomotive with high-speed analyzed by Newmark-${\beta}$ method and Runge-Kutta method are compared and contrasted considering the developed models of bridge, track and locomotive comprehensively. The dynamic analyses of wheel forces by Runge-Kutta method which are able to analyze the forces with high frequency running on the bridge and ground rail-way are conducted. Additionally, wheel forces spectrum and three rotational components of vehicle body for three typical running speeds is also presented.

  • PDF

Technical Investigation of Rail(60kg) Head Profile (60kg급 레일 두부형상 개선 기술검토)

  • 정우진;양신추
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.220-227
    • /
    • 2002
  • Now, Korea National Railroad is planning many ways to increase the maximum operating speed of train up to 200km/h by 2010. Among those ways, connecting conventional line with the KTX is the strongest alternative. Mostly, conventional lines are consisting of both KS50N and KS6O rail. However, the excessive abrasion might be occurred between wheel and rail when the KTX designed to operate on UIC60 is operating on the conventional line. On this study, new standard of 60kg-class rail considered suitability for both KTX and wheel used in conventional line is presented. It seems to be an effective solution for increasing maintenance costs expected when commercial speed of conventional line is increasing.

  • PDF

Development of a Wheel/Rail Geometric Contact Simulation Program (차륜/레일 기하학적 접촉 시뮬레이션 프로그램 개발)

  • Han Hyung-Suk;Lee En-Ho;Kim Jae-Chul
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.645-650
    • /
    • 2003
  • Wheel/Rail geometric constraint relationships, such as effective conicity and gravitational stiffness, strongly influence the lateral dynamics of railway vehicles. In general, these geometric contact characteristics are nonlinear functions of the wheelset lateral displacement. There is a need to develop a wheel/rail contact simulation program for wheels and rails with arbitrary profiles for the prediction of the dynamic behavior of railway vehicles. An algorithm to simulate any combination of wheels and rails is employed and a GUI for easy analysis is constructed. The simulation program is applied to KTX which will run on both KTX and conventional rails, two rail standards having different rail profiles. The results show that the two rail systems have different geometric contact characteristic

  • PDF

The Effect of KTX Vehicle Size Adjustment on High-Speed Railway Bridge Vibration : Numerical Study (수치해석을 통한 KTX 객차 길이 조정이 고속철도교량의 동적거동 특성에 미치는 영향 연구)

  • Shin, Jeong-Ryol;Kim, Hyun-Min;Sohn, Hoon;Yun, Chung-Bang
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.854-863
    • /
    • 2008
  • A high attention has been paid on the running safety of Korean high-speed train, KTX. In running of KTX on bridge, the running unsafety problem issued from a resonance phenomenon of bridge, which was usually caused by the periodic wheel-loads of train. Therefore, many researches on this running safety of train on bridge have been conducted by domestic or foreign researchers. In this paper, for PSC box-girder bridge which is the representative high-speed railway bridge type, some numerical analyses on the dynamic characteristics of bridge with the non-periodic wheel-loads through vehicle size adjustment were performed. These numerical analyses shows the fact that the resonance phenomenon on bridge was mitigated through vehicle size adjustment. Additional numerical analyses on the vibration reduction of bridge in accordance with the location of size-adjusted vehicle were performed. From these results, it was represented that the adjustment of vehicle size has an effect on the running safety of train as well as the ride comfort.

  • PDF

A study on the Vibration Reduction of the Commercial High-speed Train (운영 중인 고속열차의 진동저감에 관한 연구)

  • Jeon, Chang-Sung;Choi, Sunghoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.697-704
    • /
    • 2017
  • This study was carried out to investigate and alleviate the vibration problem of commercial high-speed trains. First, the measurement of the carbody vibration was performed, in order to determine the vibration level of the high-speed train. The measurement result showed that the vibration level of the driver cab was higher than that of the passenger car and that the vibration became bigger toward the trailing end of the train. The vertical vibration of the driver cab and passenger car was larger than the transverse vibration, and the maximum value of the vibration in the ballast section was larger than that in the concrete section. A dynamic analysis was carried out to improve the vibration of the KTX-Sancheon train. The results of the analysis showed that it is necessary to reduce the vibration of the driver cab and both ends of the passenger cars. To reduce the vibration of the driver cab, it was recommended that the stiffness of the secondary coil spring be reduced and the damping coefficient of the secondary vertical damper be increased. It was found that the failure of the suspension system could be the origin of the vibration problem of the high-speed train. The proper management of wheel wear plays an important role in the improvement of the operation efficiency and reduction of the carbody vibration of high-speed trains, and research is underway to change the present wheel profile to increase the mileage between wheel turning.

A 3-dimensional Wheel-rail Contact Analysis of Railway Vehicle with 2-point Contacts (2점 접촉을 고려한 철도차량의 3차원 휠-레일 접촉해석)

  • Kang, Ju-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.43-52
    • /
    • 2010
  • In this study, the shapes of the wheel and rail are represented by using 3-dimensional surface functions with surface parameters and a 3-dimensional wheel-rail contact analysis is presented. A whole numerical solution of wheel-rail contact at tread and flange including 2-point contacts can be achieved with the proposed numerical algorithm. Kinematic characteristics such as variances of vertical displacement and roll angle, and variance of wheel radius difference for arbitrary yaw and lateral displacement of wheelset, are determined for the KTX wheel-rail pair as an example. The condition of yaw and lateral displacement occurring 2-point contacts to analyze derailment are compared between standard and worn wheels. Differences of contact characteristics between curved and straight rails are also analyzed.