• Title/Summary/Keyword: KSR-III Rocket

Search Result 110, Processing Time 0.021 seconds

우주발사체용 터보펌프 액체추진기관 시스템 분석

  • Seo, Kyoun-Su;Joh, Mi-Ok;Choi, Young-In;Hong, Soon-Do;Oh, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.151-156
    • /
    • 2003
  • Liquid rocket engine system is classified into an engine of pressurization and turbo pump type by the way of fuel fed-supporting system. In the KSR-III sounding rocket, an engine of pressurization type was used, but there was lots of technical problems to be solved for a use as the first stage engine of space launch vehicle. So, an engine of turbo pump type was required to be developed to overcome the technical limitation of liquid rocket engine. In this research, the analysis of propellant of Kerosine-LOX and methane-LOX which are noticed as a future propellant was carried out for the purpose of studying the basic characteristics. And to review the basic characteristics of an engine of turbo pump type, among the sizing variant of the space launch vehicle, the ways of injecting a satellite to a direct orbit and transient orbit were discussed in this paper.

  • PDF

EFFECT OF BASE FLOW AND TURBULENCE ON THE SEPARATION MOTION OF STRAP-ON ROCKET BOOSTERS (기저부 유동 및 난류가 다단 로켓의 단 분리 운동에 미치는 영향)

  • Ko, S.H.;Kim, J.K.;Han, S.H.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.83-86
    • /
    • 2007
  • Turbulent flow analysis is conducted around the multi-stage launch vehicle including base region and detachment motion of strap-on boosters due to resultant aerodynamic forces and gravity is simulated. Aerodynamic solution procedure is coupled with rigid body dynamics for the prediction of separation behavior. An overset mesh technique is adopted to achieve maximum efficiency in simulating relative motion of bodies and various turbulence models are implemented on the flow solver to predict the aerodynamic forces accurately. At first, some preliminary studies are conducted to show the importance of base flow for the exact prediction of detachment motion and to find the most suitable turbulence model for the simulation of launch vehicle configurations. And then, developed solver is applied to the simulation of KSR-III, a three-stage sounding rocket researched in Korea. From the analyses, after-body flow field strongly affects the separation motions of strap-on boosters. Negative pitching moment at initial stage is gradually recovered and a strap-on finally results in a safe separation, while fore-body analysis shows collision phenomena between core rocket and booster. And a slight variation of motion is observed from the comparison between inviscid and turbulent analyses. Change of separation trajectory based on viscous effects is just a few percent and therefore, inviscid analysis is sufficient for the simulation of separation motion if the study is focused only on the movement of strap-ons.

  • PDF

Numerical Analysis of Combustion Characteristics in a Liquid Propellant Rocket Engine with Split-triplet Injector Elements (Split-triplet 분사기를 장착한 액체 추진제 로켓엔진의 연소특성 해석)

  • 문윤완;손채훈;김영목
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.41-51
    • /
    • 2001
  • Combustion characteristics of a KSR-III liquid rocket engine with split-triplet (F-O-O-F) type injector elements are investigated numerically from the viewpoints of engine performance and combustion flowfield. To evaluate numerical analysis of liquid rocket engine with radial type injector arrangement, 2-D axisymmetric and 3-D calculations are carried out and the prediction of engine performance for design and off-design conditions is in a good agreement with hot-firing tests. According to 2-D axisymmetric and 3-D calculations, the prediction error is 3∼5 % from the standpoint of performance. Numerical results of combustion characteristics calculated through 3-D analysis agree well with hot-firing tests qualitatively at injector plate. Decreasing impinging angle and changing radial type injector arrangement to H type injector arrangement reduce effectively local high-temperature region. Also, it is examined that those affect the performance seriously. In conclusion, it is revealed that both injector arrangement and impinging angle are critical parameters to affect the performance and combustion characteristics of the liquid rocket engine.

  • PDF

A Study of Aero-thermodynamic Ablation Characteristics for Rocket Nozzle (로켓노즐내부의 공기 열역학적 삭마특성에 관한 연구)

  • Seo, J.I.;Jeong, J.H.;Kim, Y.I.;Kim, J.H.;Song, D.J.;Bai, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.282-287
    • /
    • 2001
  • The CSCM Upwind method and Material Transport Analysis (MTA) have been used to predict the thermal response and ablation rate for non-charring material to be used as thermal protection material (TPM) in KSR-III test rocket nozzle. The thermal boundary conditions such as cold wall heat-transfer rate and recovery enthalpy for MTA code are obtained from the upwind Navier-Stokes solution procedure. The heat transfer rate and temperature variations at rocket nozzle wall were studied with shape change of the nozzle surface as time goes by. The surface recession was severely occurred at nozzle throat and this affected nozzle performance such as thrust coefficient substantially.

  • PDF

액체추진기관 Rocket의 발사를 위한 지상공급시스템 개발

  • 이정호;길경섭;김용욱;조상연;오승협
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.90-90
    • /
    • 2003
  • 한국항공우주연구원은 액체추진기관 시스템을 이용한 3단형과학로켓(이하 KSR-III)을 국내 최초로 개발하여 비행시험을 수행하였다. 액체추진기관 로켓의 비행시험을 위해서는 이전의 고체 추진기관을 이용한 과학로켓 1, 2와는 달리 비행시험 조건에 부합하게 액체추진제 및 가압제 등을 공급하는 지상설비가 필요하다. 이에 한국항공우주연구원은 독자적으로 비행시험에 필요한 제반 설비를 갖춘 발사장을 구축하였다. KSR-III는 압축 헬륨가스(GHe)를 이용하여 연료(Jet A-1)와 산화제(LOx)를 가압하여 추력을 얻는 액체추진기관 시스템이다. 따라서 발사장에서의 지상공급설비는 유공압 설비와 발사시나리오에 따라 해당 부품을 제어하고 자료를 저장하는 제어/계측 설비 및 기타설비들로 구성되어 있다. 지상공급설비 중 유공압 설비는 LOx의 저장 및 기체 내 산화제 탱크의 충전을 위한 산화제 공급설비, Jet A-1의 저장 및 기체 내 연료 탱크의 충전을 위한 연료 공급 설비, 지상설비용 밸브구동 및 기체 내부 퍼지 등에 필요한 질소($N_2$)를 저장/공급하는 설비, 기체내부 밸브 구동 및 가압제로 사용되는 기체헬륨(He)을 저장/공급하는 설비들로 구성되어 있다. 이러한 구축된 공급설비는 기능시험, 연계시험 등의 각종 입증시험을 통해 그 성능을 검증한 후 단인증모델(SQTM)을 이용하여 발사 시나리오에 따른 추진제 공급능력을 입증한 후 KSR-III의 비행시험을 성공적으로 수행하였다. 수행된 연구결과는 향후 건설되어질 우주센터내의 발사장 기반설비 설계의 기초 자료로 활용할 수 있을 것이다.

  • PDF

Dynamic Pressure Characteristics of Pulse Gun Device for Combustion Stability Rating of Liquid Rocket Engines (액체 로켓엔진 연소 안정성 평가를 위한 압력 교란 장치 특성 연구)

  • Seo,Seong-Hyeon;Go,Yeong-Seong;Lee,Gwang-Jin;Park,Seong-Jin;Lee,Su-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.94-99
    • /
    • 2003
  • For the assessment of combustion stability of a liquid rocket engine, a device called "Pulse Gun" should be developed first, which can induce artificial perturbations that may lead to excitations of pressure oscillations in a combustion chamber. A model chamber has been used for identifying design parameters of a pulse gun that defines its characteristics. Dynamic pressure measurements showed that shock waves generated from pulse guns are axisymmetric around the axis of a pulse gun barrel. Pressure waves perturbed by a pulse gun induce resonant acoustic frequencies of a model chamber. This fact indicates that successful pressure field perturbations of the KSR-III combustion chamber can be performed by a newly developed pulse gun device. A maximum value of dynamic pressure peaks measured at the opposite point against a pulse gun outlet becomes stronger as charge mass of pulse gun powder increases.

Wing-Fuselage Joint Design Improvement Using Nonlinear Analysis Considering Contact (접촉을 갖는 날개-동체 조인트의 비선형 해석을 통한 설계 개선)

  • Kim, Gwang-Su;Yun, Se-Hyeon;Sim, Jae-Yeol;Lee, Yeong-Mu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.108-114
    • /
    • 2002
  • In this paper, nonlinear finite element analysis is performed to ensure structural safety and to suggest the design improvement of wing-to-fuselage joint of the KSR-III rocket. In the joint, wings are attached to fuselage by fitting wing attachment part into the groove on the fuselage frame, and load transfer between wing and fuselage frame is accomplished mainly throug the contact of two members as well as fastening bolts. The careful finite element modeling has been proposed for the purpose of analyzing problems with relatively complicated load path. The detailed bolt modeling is conducted and GAP elemets are used to simulate contact problem between joined members and bolts. The suggested design improvement is verified by structural testing and the analysis results are compared with test results.

DEVELOPMENT OF LANGMUIR AND ELECTRON PROBE FOR KSR-III (KSR-3 과학로켓용 전자환경 측정기 개발)

  • Hwang, S. H.;Kim, J.;Kim, J. K.;Lee, S. J.;Jang, Y. S.;Park, J. J.;Cho, G. R.;Won, Y. I
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.249-256
    • /
    • 2001
  • KARI(Ko.ea Aerospace Research Institute) has measured the ionospheric electron temperature and density over the Korean Peninsular with the Langmuir and Electron Probe(LEP) onboard the Korean Sounding Rocket-II(KSR-II) In 1998. The purpose of LEP is to measure the electron density and temperature profile in the ionosphere. LEP consists of the Langmuir probe(LP) and the Electron temperature Probe(ETP) which are widely used for the measurement of the ionospheric plazma environment . We discuss the development of the Langmuir and Electron Probe which will be onboard the KSR-III and some test results in a simulated space plasma environment with the plasma chamber at the ISAS in Japan. These measurements could contribute to the basic study of ionospheric environment which also can be compared with other reference models such as IRI and PIM.

  • PDF

Numerical Prediction of Spray Combustion and Film Cooling in a Liquid Rocket Engine (액체로켓 엔진의 분무연소 및 막냉각에 대한 수치해석)

  • 박태선;류철성
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.9-17
    • /
    • 2002
  • For turbulent spray combustion flows a coupled numerical procedure was developed, This method was discretized by using generalized curvilinear coordinates to handle complex geometries. The preconditioning and eigenvalue rescaling techniques were employed to provide efficient convergences over a wide range of subsonic Mach numbers. The accuracy was validated by simulating the laminar cavity flow. The film cooling effect of a liquid rocket engine (KSR-III) were investigated by a spray combustion analysis. The film cooling showed a negative effect on the combustion efficiency. In the combustion chamber wall, the film cooling effect was revealed to be promoted by the production of fuel rich zone.

Development of Analysis Code for Evaluation of Acoustic Stability of Rocket Engine Combustor with Various Designs (로켓엔진 연소기 설계의 음향안정성 평가를 위한 해석코드 개발)

  • Kim, Seong-Ku;Kim, Hong-Jip;Sohn, Chae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.110-116
    • /
    • 2004
  • In this study, a three-dimensional finite-element analysis code has been developed to predict acoustic behaviors in rocket combustion chambers and to quantitatively evaluate acoustic stability margins for various designs with passive stabilization devices such as baffle and acoustic resonators. As a validation case, computations are made for combustion chambers with/without a hub-and-six-blade baffle which are developed in the KSR-III Development Program. Compared with experimental results from ambient acoustic test, the numerical approach reasonably well predicts acoustic pressure responses to acoustic oscillation excitation for both unbaffled and baffled combustion chambers and yields quantitatively good agreement for acoustic damping effects of baffle installation in terms of damping factor ratio and resonant frequency shift.