• Title/Summary/Keyword: KRISS

Search Result 590, Processing Time 0.023 seconds

Intralaboratory Comparison of the Realization of the Triple-point Temperature of Mercury (수은 삼중점 온도 실현의 교정 기관 내 비교)

  • Inseok, Yang;Young Hee, Lee
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.448-454
    • /
    • 2022
  • An intralaboratory comparison of the realization of the triple-point temperature of mercury, which is defined as -38.8344℃ on the international temperature scale of 1990 (ITS-90), was conducted at the Korea Research Institute of Standards and Science (KRISS), the national metrology institute of Korea. To this end, four triple-point-of-mercury cells were compared using the resistance ratio measurement of a standard platinum resistance thermometer to validate the calibration results obtained using the triple-point-of-mercury cells at KRISS. The triple-point temperatures of all the four cells, one of which is designated as the national standard cell, were within 0.3 mK of the national standard. Based on 13 experiments on the four triple-point-of-mercury cells, the uncertainty in the comparison of the triple-point-of-mercury cells was 0.08 mK, and the uncertainty in the realization of the triple-point temperature of mercury was 0.19 mK. The results of the intralaboratory comparison validated that utilizing any of the four triple-point-of-mercury cells would result in the realization of a temperature within 0.3 mK of the average value determined by two key international comparisons for the realization of -38.3844℃ following the ITS-90.

Improvement of Spatial Radiance Uniformity of Small Integrating Spheres (소형 적분구의 공간 복사 휘도 균일도 향상 연구)

  • Yong Shim Yoo;Dong Joo Shin;Bong Hak Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.5
    • /
    • pp.202-209
    • /
    • 2023
  • A KRISS-type small integrating sphere with a high spatial radiance uniformity was made using pressed polytetrafluoroethylene (PTFE) and a reflective rod to calibrate the spectral radiance responsivity of absolute radiant thermometers. The spatial radiance uniformity of the KRISS-type small integrating sphere was ±0.009%, five times higher than the best value reported by foreign national metrology institutions thus far. In addition, we improved the spatial radiance uniformity of a commercial sintered PTFE integrating sphere by a factor of 10.

Development of Primary Standard Gas Mixtures for Monitoring Monoterpenes (α-pinene, 3-carene, R-(+)-limonene, 1,8-cineole) Ambient Levels (at 2 nmol/mol) (대기 중 모노테르펜 (α-피넨, 3-카렌, R-리모넨, 1,8-시네올) 측정을 위한 혼합표준가스개발)

  • Kang, Ji Hwan;Kim, Mi Eon;Kim, Young Doo;Rhee, Young Woo;Lee, Sangil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.3
    • /
    • pp.320-328
    • /
    • 2016
  • Among biogenic volatile organic compounds (BVOCs) in the natural ecosystem, monoterpenes, along with isoprene, play important roles in atmospheric chemistry and make significant impacts on air pollution and climate change, especially due to their contribution to secondary organic aerosol production and photochemical ozone formation. It is essential to measure monoterpene concentrations accurately for understanding their oxidation processes, emission processes and estimation, and interactions between biosphere and atmosphere. Thus, traceable calibration standards are crucial for the accurate measurement of monoterpenes at ambient levels. However, there are limited information about developing calibrations standards for monoterpenes in pressured cylinders. This study describes about developing primary standard gas mixtures (PSMs) for monoterpenes at about 2 nmol/mol, near ambient levels. The micro-gravimetric method was applied to prepare monoterpene (${\alpha}$-pinene, 3-carene, R-(+)-limonene, 1,8-cineole) PSMs at $10{\mu}mol/mol$ and then the PSMs were further diluted to 2 nmol/mol level. To select an optimal cylinder for the development of monoterpene PSMs, three different kinds of cylinders were used for the preparation and were evaluated for uncertainty sources including long-term stability. Results showed that aluminum cylinders with a special internal surface treatment (Experis) had little adsorption loss on the cylinder internal surface and good long-term stability compared to two other cylinder types with no treatment and a special treatment (Aculife). Results from uncertainty estimation suggested that monoterpene PSMs can be prepared in pressured cylinders with a special treatment (Experis) at 2 nmol/mol level with an uncertainty of less than 4%.

Study on Uncertainty Factors of Head Vibration Measurements (머리 진동 측정치의 불확도 인자들에 관한 연구)

  • Cheung, Wan-Sup;Kim, Young-Tae;Ryu, Je-Dam;Hong, Dong-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.20-28
    • /
    • 2005
  • This paper addresses uncertainty issues encountered recently in measuring head vibration using the conventional 6-axis or 9-axis bite-bar model. Those conventional bite-bar models are shown to present insufficient information to evaluate a generalized motion of head vibration. In order to overcome such limit, a new theoretical measurement model that consists of four 3-axis linear accelerometers is suggested. It is shown to enable the measurement of three angular acceleration components and six second-order angular velocity-dependent terms. Those nine angular motion-related ones, in addition to the three linear acceleration terms at the origin, are found to make it possible to evaluate the generalized head vibration for a given position. To examine the feasibility of the proposed method, a newly designed 12-axis bite-bar was developed. Detailed experimental results obtained from the developed 12-axis bite-bar are demonstrated in this paper. They illustrate that the popular 6-axis bite-bar model yield about $4.0\%$ relative measurement uncertainty for the pitch component of head vibration, $14\%$ and $10\%$ relative measurement uncertainty for the roll and yaw components of head vibration, respectively. Furthermore, this paper proposes other uncertainty factors to be considered in the future.

Correlation Between Mechanical and Magnetic Properties for Cold Rolled Carbon Steel Sheet (냉연강판의 기계적 물성과 자기적 특성의 상관관계)

  • Park, S.Y.;Ryu, K.S.;Yi, J.K.;Park, J.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.4
    • /
    • pp.211-215
    • /
    • 2006
  • Measurement methods in order to measure the mechanical properties nondestructively have been studied. The mechanical properties of the structural and turbine rotor steels are related with their magnetic properties. If the magnetic properties of the cold rolled carbon steel sheet (CR) for a car are measured nondestructively, its mechanical properties are analogized by their magnetic properties. And then the mechanical properties are monitored on-line by measuring the magnetic properties. We prepared three CR materials, CBQ 3060, CBQ 3041, and CBQ 3036, were prepared in order to measure their mechanical and magnetic properties. The Vickers hardness,yield strength, and tensile strength were measured by ASTM E 8M, and the reversible magnetic permeability was measured by the surface type probe. The coercivity calculated by the peak interval of reversible magnetic permeability increased linearly with the increase of Vickers hardness, yield strength, and tensile strength. The amplitude of the peak interval of reversible magnetic permeability drastically decreased when the lift-off was increased.

A study on quality assurance and evaluation of uncertainty for the analysis of natural gas (천연가스 분석의 불확도 평가 및 품질 보증을 위한 연구)

  • Woo, Jin-Chun;Kim, Young-Doo;Bae, Hyun-Kil;Lee, Kang-Jin;Her, Jae-Young
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.490-497
    • /
    • 2006
  • The sources of uncertainty in the analysis of liquified natural gas (LNG) process are evaluated. The uncertainty sources evaluated are the repeatability of measurement, non-linearity of GC, the uncertainty of standard gas used for calibration, difference of gas sampling and deviation after GC calibration and major revealed sources are the non-linearity of GC, the uncertainty of standard gas and the deviation after GC calibration. The determined values and uncertainties of methane and ethane as the major components are $90.0%mol/mol{\pm}1.9%$ (relative and 95% level of confidence) and $6.26%mol/mol{\pm}0.08$ (relative and 95% level of confidence), respectively. The contribution of uncertainty varies depending on the source of uncertainty and gas component. In the case of methane, non-linearity of GC, the uncertainty of standard gas and deviation after GC calibration contribute 0.28%, 0.25% and 0.24% of relative expanded uncertainty, respectively.

Development of dimethyl disulfide gas CRM and stability test (다이메틸다이설파이드 가스 인증표준물질 개발 및 안정성 평가)

  • Kim, Young-Doo;Woo, Jin-Chun;Bae, Hyun-Kil
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.498-503
    • /
    • 2006
  • A type of dimethyl disulfide gas CRM in the ppb level was developed for the analysis of tracelevel odorous gas in environmental atmosphere. The concentration of dimethyl disulfide($(CH_3)_2S_2$) was $10{\mu}mol/mol$ level in the cylinder filled with nitrogen, 1500 psi. And the variability of the concentration for 2 years was about 0.14% due to the adsorption or instability of $(CH_3)_2S_2$. The gas standards produced simultaneously in 4 bottles and examined by GC-FID were shown with 0.4%, reproducibility of preparation and 0.25%, standard uncertainty due to weighing and purity. The relative expended uncertainty of 1.1%(95% of confidence level, k=2) was assigned to the certified value of $10{\mu}mol/mol$ level of $(CH_3)_2S_2$ after quantitative evaluation on the purity, mixing, weighing, analysis, adsorption and stability of dimethyl sulfide gas.

Field Strength Standards in 30~ 1000MHz Frequency Range (30~1000MHz 주파수 범위에서의 전자기장의 세기 표준)

  • 김정환;강찬구
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.12
    • /
    • pp.1893-1901
    • /
    • 1993
  • This paper presents the field strength standard established using a standard antenna method in the frequency range of 30~1000MHz at KRISS(Korea Research Institute of Standards and Science). Designs on antenna elements and a balun, and the characteristics of an antenna voltmeter are described. The uncertainties in generation the standard fields are analzed and estimated to be 5~14%.

  • PDF