• Title/Summary/Keyword: KRISS

Search Result 591, Processing Time 0.03 seconds

Realization of the national standard of candela traceable to the absolute cryogenic radiometer at KRISS (극저온 절대복사계에 소급한 칸델라 국가표준 실현)

  • Park, Seung-Nam;Kim, Yong-Wan;Lee, Dong-Hoon
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.5
    • /
    • pp.443-448
    • /
    • 2004
  • We realized the national standard of the candela, one of the SI units, by using two photometers with the spectral responsivity measured in reference to the absolute cryogenic radiometer. The external apertures of the photometers were fabricated using a diamond turning machine, and measured in terms of area with uncertainty of 0.05 %(k = 1). The candela is realized using a 1 kW FEL lamp and the characterized photometers on an optical bench. The uncertainty is budgeted to be 0.25 %(k = 1) considering the uncertainty of the spectral responsivity and the response uniformity of the detectors, the area of the external apertures, the color temperature of the lamp, and the positioning reproducibility of the photometers and the lamp. We verified the realized scale by comparing with the scale of National Institute of Standards and Technology, USA. They coincided with each other within 0.1%.

Quantitative Mass Spectrometric Analysis of Mixed Self-Assembled Monolayers for Biochips

  • Son, Jin Gyeong;Shon, Hyun Kyong;Hong, Daewha;Choi, Changrok;Han, Sang Woo;Choi, Insung S.;Lee, Tae Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.275-275
    • /
    • 2013
  • Formation and characterization of self-assembled monolayers (SAMs) on various surfaces are the essential basis for many other applications, including molecular switches, biosensors, microfluidics, and fundamental studies in surfaces and interfaces. To improve the performance at these applications, it is a key to control the quantity of each molecule in various mixed SAMs on the surface. In this study, using mixed SAM of carbamate-based hydroquinone (HQ)-PhBr and11-mercaptoundecanol, the quantitative mass spectrometric method of mixed SAM was developed based on comparison study with XPS and FT-IR methods. In addition, our method was applied to another mixed SAM of biotinylated PEG alkane thiol and 11-mercaptoundecanol for verification purpose. Time-of-flight secondary mass spectrometry (ToF-SIMS) analysis was performed to identify and quantify each molecule of mixed SAM along with principal component analysis (PCA). Since there is no matrix effect in the X-ray photoelectron spectroscopy (XPS) and Fourier transform-infrared (FT-IR) techniques, we compared ToF-SIMS results with XPS and FT-IR results. Because PCA results from ToF-SIMS analysis are well matched with XPS and FT-IR results from both mixed SAMs, we are expecting that our method will be useful to identify and quantify each molecule in various mixed SAMs.

  • PDF

Precise Measurements of Waveguide Scattering Parameters in G-Band (G-Band 도파관 산란 계수 정밀 측정)

  • Kang, Jin-Seob;Kim, Jeong-Hwan;Cho, Chihyun;Kim, Dae-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.892-899
    • /
    • 2013
  • This paper discusses difficulties in precise measurements of the scattering parameters in (sub-)millimeter-wave range and tips for more accurate measurements, and provides measurement examples in the G-band(140~220 GHz). First, one investigates the differences in operating principles of scattering parameters measurement systems used in microwave and (sub-)millimeter-wave ranges and describes tips for better operation of the (sub-)millimeter-wave scattering parameters measurement system. In addition, one describes tips for better transmission properties and connection repeatability of waveguides and a precise measurement method for devices with small reflection coefficients.

The Study on In-situ Diagnosis of Chemical Vapor Deposition Processes (화학기상증착 진공공정의 실시간 진단연구)

  • Jeon, Ki-Moon;Shin, Jae-Soo;Lim, Sung-Kyu;Park, Sang-Hyun;Kang, Byoung-Koo;Yune, Jin-Uk;Yun, Ju-Young;Shin, Yong-Hyeon;Kang, Sang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.86-92
    • /
    • 2011
  • The diagnosis studies of the process of chemical vapor deposition were carried out by using in-situ particle monitor (ISPM) and self-plasma optical emission spectroscopy (SPOES). We used the two kinds of equipments such as the silicon plasma enhanced chemical vapor deposition system with silane gas and the borophosphosilicate glass depositon system for monitoring. Using two sensors, we tried to verify the diagnostic and in-situ sensing ability of by-product gases and contaminant particles at the deposition and cleaning steps. The processes were controlled as a function of precess temperature, operating pressure, plasma power, etc. and two sensors were installed at the exhaust line and contiguous with each other. the correlation of data (by-product species and particles) measured by sensors were also investigated.

The effect of thermal anneal on luminescence and photovoltaic characteristics of B doped silicon-rich silicon-nitride thin films on n-type Si substrate

  • Seo, Se-Young;Kim, In-Yong;Hong, Seung-Hui;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.141-141
    • /
    • 2010
  • The effect of thermal anneal on the characteristics of structural properties and the enhancement of luminescence and photovoltaic (PV) characteristics of silicon-rich silicon-nitride films were investigated. By using an ultra high vacuum ion beam sputtering deposition, B-doped silicon-rich silicon-nitride (SRSN) thin films, with excess silicon content of 15 at. %, on P-doped (n-type) Si substrate was fabricated, sputtering a highly B doped Si wafer with a BN chip by N plasma. In order to examine the influence of thermal anneal, films were then annealed at different temperature up to $1100^{\circ}C$ under $N_2$ environment. Raman, X-ray diffraction, and X-ray photoemission spectroscopy did not show any reliable evidence of amorphous or crystalline Si clusters allowing us concluding that nearly no Si nano-cluster could be formed through the precipitation of excess Si from SRSN matrix during thermal anneal. Instead, results of Fourier transform infrared and X-ray photoemission spectroscopy clearly indicated that defective, amorphous Si-N matrix of films was changed to be well-ordered thanks to high temperature anneal. The measurement of spectral ellipsometry in UV-visible range was carried out and we found that the optical absorption edge of film was shifted to higher energy as the anneal temperature increased as the results of thermal anneal induced formation of $Si_3N_4$-like matrix. These are consistent with the observation that higher visible photoluminescence, which is likely due to the presence of Si-N bonds, from anneals at higher temperature. Based on these films, PV cells were fabricated by the formation of front/back metal electrodes. For all cells, typical I-V characteristic of p-n diode junction was observed. We also tried to measure PV properties using a solar-simulator and confirmed successful operation of PV devices. Carrier transport mechanism depending on anneal temperature and the implication of PV cells based on SRSN films were also discussed.

  • PDF

The Development of the Contamination Prevention Module of an Optical Window Using Ultrasonic Waves (초음파를 이용한 광학창 오염방지 모듈 개발)

  • Lee, ChangHee;Jeon, KiMun;Shin, JaeSoo;Yun, JuYoung;Cho, Seonghyun;Kang, Sang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.4
    • /
    • pp.175-180
    • /
    • 2013
  • We developed the contamination prevention module of an optical window for an In-Situ Particle Monitor (ISPM) system. the core part of the module is the generator of an ultrasonic wave and the module is to remove particles stuck to the window by the transfer of the wave force to the window surface. In order to enhance transfer efficiency of the waves the frequency of the ultrasonic wave was optimized and a low impedance material (plexiglass) and a soft sealing material (Si rubber) were used. The ISPM with the developed module was installed at the exhaust line of a BPSG CVD equipment and the effect of the module was verified.

Thickness evaluation of Cr coating fuel rod using encircling ECT sensor

  • Park, Jeong Won;Ha, Jong Moon;Seung, Hong Min;Jang, Hun;Choi, Wonjae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3272-3282
    • /
    • 2022
  • To improve the safety and life extension qualities of nuclear fuel rods which is currently made of zirconium (Zr) alloy, research on the application of chromium (Cr) coating was conducted. Cr coating has advantages such as increased corrosion resistance and reduced oxidation rate, but non-destructive thickness evaluation studies are needed to ensure the reliability of the steps taken to provide uniform coating thickness. Eddy current testing (ECT) is a representative non-destructive technique for such as thickness evaluation and surface defect inspection. To inspect changes in thickness at micron scale, the Swept Frequency Eddy Current Testing (SFECT) method was applied to select a frequency range sensitive to changes in thickness. The coating thickness was evaluated using changes in signals, such as that for impedance. In this study, basic research was performed to evaluate the thickness of the Cr coating on a rod using an encircling sensor and the SFECT technique. The sensor design parameters were determined through simulation, after which the new sensor was manufactured. A sensor capable of measuring the thickness of a non-uniformly Cr-coating rod was selected through an experiment evaluating the performance of the manufactured sensor. This was done using the impedance-difference of a Cr-coating rod and a Zr alloy rod. The possibility of evaluation of the Cr coating thickness was confirmed by comparing the experimental results with the selected sensor and the signals of the measured Cr-coating rod. All simulation results were verified experimentally.

Establishment of a National Primary Inductance Standard Unit

  • Kim Han Jun;Lee Rae Duk;Semenov Yu. P.;Han Sang Ok
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.283-288
    • /
    • 2005
  • A portable primary inductance standard set that includes a Maxwell-Wien bridge and a 10 mH standard inductor installed in a thermostat has been developed at KRISS. Two auxiliary resistance capacitance networks (analogous to a 'Wagner ground') provide excellent stability of the bridge balance and impose less strict requirements on the components of these networks. Removable capacitance and ac-dc resistance standards used in the bridge arms made it possible to reproduce 10 mH and 100 mH inductance values in the frequency range of 500 Hz to 3 kHz. From investigations of this standard and preliminary comparison with VNIIM (D. I. Mendeleyev Institute for Metrology), the results have demonstrated that the bridge can be used as a part of the transportable inductance standard with a measurement uncertainty within (1-3) $\mu$H/H at frequencies of 1 kHz and 1.6 kHz. The application of the bridge as a constituent part of the transportable standard gives us an opportunity to eliminate the influence of the standard inductors.

Determination Errors of Saturation Magnetization and Magnetocrystalline Anisotropy Constant from Magnetization Curves of Magnetically (일측이방성 다결정의 자화곡선을 이용한 포화자화 및 결정자기이방성상수 결정에서의 오차분석)

  • Kim, M.J.;Hur, J.;Kim, Y.B.;Kim, T.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.4
    • /
    • pp.173-176
    • /
    • 1999
  • Errors of saturation magnetization and magnetocrystalline anisotropy constant determined by magnetization curve of magnetically aligned unixial power were analyzed. In case of alignment factor ${\Theta}_0=10{\circ}$, magnetic constant errors of $Nd_2Fe_{14}B$ were calculated to be error of $M_S{\risingdotseq}1{\%}\;and\;error\;of\;K_1{\risingdotseq}13\;{\%}$, respectively, and magnetic constant errors of Ba-ferrite were calculated to be error of $M_S{\risingdotseq}1{\%}\;and\;error\;of\;K_1{\risingdotseq}17\;{\%}$. In this method, $M_s$ was found to be determined with high accuracy. High alignment is desirable for high accuracy.

  • PDF

An international Comparison Measurement of Silicon Wafer Sheet Resistance using the Four-point Probe Method

  • Kang, Jeon-Hong;Ying, Gao;Cheng, Yuh-Chuan;Kim, Chang-Soo;Lee, Sang-Hwa;Yu, Kwang-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.325-330
    • /
    • 2015
  • With approval from the Asia Pacific Metrology Program Working Group on Materials Metrology (APMP WGMM), an international comparison for sheet resistance standards for silicon wafers was firstly conducted among Korea Research Institute of Standards and Science (KRISS) in Korea, CMS/ITRI in Taiwan, and NIM in China, which are national metrology institutes (NMIs), from August 2011 to January 2012. The sheet resistance values of the standards are $10{\Omega}$, $100{\Omega}$, and $1000{\Omega}$; the measurement was conducted in sequence at KRISS, CMS/ITRI, NIM, and KRISS again using the four-point probe method with single and dual configuration techniques. The reference value for the measurement results of the three NMIs was obtained through averaging the values of the three results for each sheet resistance range. The differences between the reference value and the measured values is within 0.22% for $10{\Omega}$, 0.17% for $100{\Omega}$, and 0.12% for $1000{\Omega}$. Therefore, the international consistency for conducting sheet resistance measurements is confirmed within 0.22% through the APMP WGMM approved comparison.