• Title/Summary/Keyword: KRAS gene mutation

Search Result 10, Processing Time 0.026 seconds

Noonan Syndrome Confirmed to KRAS Gene Mutation: A Case of KRAS Gene Mutation (KRAS 유전자 변이로 확진된 Noonan 증후군 신생아 1례)

  • Kim, Sung-Woo;Park, So-Eun;Jeong, In-Hyuk;Yoon, Jeong-Won;Lee, Cho-Ae;Jeon, Ji-Hyun
    • Neonatal Medicine
    • /
    • v.18 no.2
    • /
    • pp.374-378
    • /
    • 2011
  • Noonan syndrome is an autosomal dominant disorder characterized by typical facial features, congenital heart disease, and short stature. Diagnosis is difficult only with clinical symptoms and it is recently confirmed with gene study. The genotype-phenotype correlations have been reported. We report a newborn with KRAS gene mutation. This is the second report of case with KRAS gene mutation in Korea. So we hope this case will be a help to diagnosis and treatment of Noonan syndrome from birth.

L1 Cell Adhesion Molecule Promotes Migration and Invasion via JNK Activation in Extrahepatic Cholangiocarcinoma Cells with Activating KRAS Mutation

  • Kim, Haejung;Hwang, Haein;Lee, Hansoo;Hong, Hyo Jeong
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.363-370
    • /
    • 2017
  • Extrahepatic cholangiocarcinoma (ECC), a malignant tumor of biliary origin, has a poor prognosis with limited treatment options. The KRAS oncogene is the most commonly mutated gene in ECC and one of the factors that predicts a poor prognosis and low survival rate. L1 cell adhesion molecule (L1CAM) is expressed in ECC cells and acts as an independent poor prognostic factor in predicting patient survival. In this study we investigate the functional significance of L1CAM in ECC cells with activating KRAS mutation. We selected an ECC cell line, EGI-1, with activating KRAS mutation, and then confirmed its expression of L1CAM by RT-PCR, western blot analysis, and flow cytometry. The suppression of L1CAM expression (using a specific lentivirus-delivered shRNA) significantly decreased the migratory and invasive properties of EGI-1 cells, without altering their proliferation or survival. Analyses of signaling effectors in L1CAM-depleted and control EGI-1 cells indicated that L1CAM suppression decreased the levels of both phosphorylated MKK4 and total MKK4, together with c-Jun N-terminal kinase (JNK) phosphorylation. Further, exposure to a JNK inhibitor (SP600125) decreased migration and invasion of EGI-1 cells. These results suggest that L1CAM promotes cellular migration and invasion via the induction of MKK4 expression, leading to JNK activation. Our study is the first to demonstrate a functional role for L1CAM in ECC carrying the activating KRAS mutation. Given that KRAS is the most commonly mutated oncogene in ECC, L1CAM may serve as an attractive therapeutic target for ECC cells with activating KRAS mutation.

Distribution of KRAS and BRAF Mutations in Metastatic Colorectal Cancers in Turkish Patients

  • Gorukmez, Orhan;Yakut, Tahsin;Gorukmez, Ozlem;Sag, Sebnem Ozemri;Karkucak, Mutlu;Kanat, Ozkan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1175-1179
    • /
    • 2016
  • The results of this study demonstrate the potential prognostic and predictive values of KRAS and BRAF gene mutations in patients with colorectal cancer (CRC). It has been proven that KRAS and BRAF mutations are predictive biomarkers for resistance to anti-EGFR monoclonal antibody treatment in patients with metastatic CRC (mCRC). We demonstrated the distribution of KRAS (codons 12, 13 and 61) and BRAF (codon 600) gene mutations in 50 mCRCs using direct sequencing and compared the results with clinicopathological data. KRAS and BRAF mutations were identified in 15 (30%) and 1 (2%) patients, respectively. We identified KRAS mutations in codon 12, 13 and 61 in 73.3% (11/15), 20% (3/15) and 6.67% (1/15) of the positive patients, respectively. The KRAS mutation frequency was significantly higher in tumors located in the ascending colon (p=0.043). Thus, we found that approximately 1/3 of the patients with mCRC had KRAS mutations and the only clinicopathological factor related to this mutation was tumor location. Future studies with larger patient groups should yield more accurate data regarding the molecular mechanism of CRC and the association between KRAS and BRAF mutations and clinicopathological features.

Lack of KRAS Gene Mutations in Chronic Myeloid Leukemia in Iran

  • Kooshyar, Mohammad Mahdi;Ayatollahi, Hossein;Keramati, Mohammad Reza;Sadeghian, Mohammad Hadi;Miri, Mohsen;Sheikhi, Maryam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6653-6656
    • /
    • 2013
  • Background: The single most common proto-oncogene change in human neoplasms is a point mutation in RAS genes. A wide range of variation in frequency of KRAS mutations has been seen in hematologic malignancies. Despite this, RAS roles in leukemogenesis remain unclear. The frequency of KRAS mutations in CML has been reported to be between zero an 10%. Many attempts have been done to develop an anti-RAS drug as a therapeutic target. Materials and Methods: This cross sectional study was performed in Mashhad University of Medical Sciences, Mashhad, Iran from 2010-2012. In 78 CML patients (diagnosed according to WHO 2008 criteria) in chronic or accelerated phases, KRAS mutations in codons 12 and 13 were analyzed using a modified PCR-restriction fragment length polymorphism (RFLP) method. Results: We did not detect any KRAS mutations in this study. Conclusions: KRAS mutations are overall rare in early phase CML and might be secondary events happening late in leukemogenesis cooperating with initial genetic lesions.

Evaluation of KRAS Gene Mutations in Metastatic Colorectal Cancer Patients in Kermanshah Province

  • Amirifard, Nasrin;Sadeghi, Edris;Farshchian, Negin;Haghparast, Abbas;Choubsaz, Mansour
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3085-3088
    • /
    • 2016
  • Background: Worldwide, colorectal cancer (CRC) is reported to be the fourth most common cancer in men and the third most common in women. KRAS is a proto-oncogene located on the short arm of chromosome 12. The aim of this study was to evaluate the KRAS oncogene and its relationship it with clinicopathologic features in 33 Kurdish patients. Materials and Methods: Metastatic CRC between 2012 and 2016 that came to Imam Reza hospital, Kermanshah province, Iran, were analysed for KRAS mutations using allele specific PCR primers and pyrosequencing. Correlations between variables was analyzed in PASW SPSS and overall survival curves were plotted in Graph Pad prism 5. Results: The mean age for them at diagnosis was $51.5{\pm}12.6$ years (range, 22-76 years). Among the 33 patients that were sequenced, 12 samples in the KRAS gene had a nucleotide change, 11 in codon 12 and 1 in codon 13.There was no significant relationship between the mutation and clinical and pathological aspects of the disease. Conclusions: Knowledge of the KRAS status can help in decision-making to treat metastatic colorectal cancer patients more efficiently and increase survival. However, many Kurdish people due to economic problems are not able to do this valuable genetic test. In addition, we need more careful research of KRAS oncogene at the molecular level in young populations with more patients.

Frequency of K-RAS and N-RAS Gene Mutations in Colorectal Cancers in Southeastern Iran

  • Naseri, Mohsen;Sebzari, Ahmadreza;Haghighi, Fatemeh;Hajipoor, Fatemeh;Razavi, Fariba Emadian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4511-4515
    • /
    • 2016
  • Background: K-RAS and N-RAS gene mutations cause resistance to treatment in patients with colorectal cancer. Based on this, awareness of mutation of these genes is considered a clinically important step towards better diagnosis and appropriate treatment. Materials and Methods: Fifty paraffin-embedded blocks of colorectal cancer were obtained from Imam Reza Hospital of Birjand, Iran. Following DNA extraction, the samples were analyzed for common mutations of exons 2, 3 and 4 of KRAS and NRAS genes using real time PCR and pyrosequencing. Results: According to this study, the prevalence of mutations was respectively 28% (14 out of 50) and 2% (1 out of 50) in KRAS and NRAS genes. All the mutations were observed in patients >50 years old. Conclusions: Mutations were found in both KRAS and NRAS genes in colorectal cancers in Iranian patients. Determining the frequency of these mutations in each geographical region may be necessary to benefit from targeted cancer therapy.

Mutational Analysis of Key EGFR Pathway Genes in Chinese Breast Cancer Patients

  • Tong, Lin;Yang, Xue-Xi;Liu, Min-Feng;Yao, Guang-Yu;Dong, Jian-Yu;Ye, Chang-Sheng;Li, Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5599-5603
    • /
    • 2012
  • Background: The epidermal growth factor receptor (EGFR) is a potential therapeutic target for breast cancer treatment; however, its use does not lead to a marked clinical response. Studies of non-small cell lung cancer and colorectal cancer showed that mutations of genes in the PIK3CA/AKT and RAS/RAF/MEK pathways, two major signalling cascades downstream of EGFR, might predict resistance to EGFR-targeted agents. Therefore, we examined the frequencies of mutations in these key EGFR pathway genes in Chinese breast cancer patients. Methods: We used a high-throughput mass-spectrometric based cancer gene mutation profiling platform to detect 22 mutations of the PIK3CA, AKT1, BRAF, EGFR, HRAS, and KRAS genes in 120 Chinese women with breast cancer. Results: Thirteen mutations were detected in 12 (10%) of the samples, all of which were invasive ductal carcinomas (two stage I, six stage II, three stage III, and one stage IV). These included one mutation (0.83%) in the EGFR gene (rs121913445-rs121913432), three (2.50%) in the KRAS gene (rs121913530, rs112445441), and nine (7.50%) in the PIK3CA gene (rs121913273, rs104886003, and rs121913279). No mutations were found in the AKT1, BRAF, and HRAS genes. Six (27.27%) of the 22 genotyping assays called mutations in at least one sample and three (50%) of the six assays queried were found to be mutated more than once. Conclusions: Mutations in the EGFR pathway occurred in a small fraction of Chinese breast cancers. However, therapeutics targeting these potential predictive markers should be investigated in depth, especially in Oriental populations.

Sensitive High-Resolution Melting Analysis for Screening of KRAS and BRAF Mutations in Iranian Human Metastatic Colorectal Cancers

  • Niya, Mohammad Hadi Karbalaie;Basi, Ali;Koochak, Aghigh;Tameshkel, Fahimeh Safarnezhad;Rakhshani, Nasser;Zamani, Farhad;Imanzade, Farid;Rezvani, Hamid;Adib sereshki, Mohammad Mahdi;Sohrabi, Masoud Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5147-5152
    • /
    • 2016
  • Background: Investigations of methods for detection of mutations have uncovered major weaknesses of direct sequencing and pyrosequencing, with their high costs and low sensitivity in screening for both known and unknown mutations. High resolution melting (HRM) analysis is an alternative tool for the rapid detection of mutations. Here we describe the accuracy of HRM in screening for KRAS and BRAF mutations in metastatic colorectal cancer (mCRCs) samples. Materials and Methods: A total of 1000 mCRC patients in Mehr Hospital, Tehran, Iran, from Feb 2008 to May 2012 were examined for KRAS mutations and 242 of them were selected for further assessment of BRAF mutations by HRM analysis. In order to calculate the sensitivity and specificity, HRM results were checked by pyrosequencing as the golden standard and Dxs Therascreen as a further method. Results: In the total of 1,000 participants, there were 664 (66.4%) with wild type and 336 (33.6%) with mutant codons 12 and/or 13 of the KRAS gene. Among 242 samples randomly checked for the BRAF gene, all were wild type by HRM. Pyrosequencing and Dxs Therascreen results were in line with those of the HRM. In this regard, the sensitivity and specificity of HRM were evaluated as 100%. Conclusion: The findings suggest that the HRM, in comparison with DNA sequencing, is a more appropriate method for precise scanning of KRAS and BRAF mutations. It is also possible to state that HRM may be an attractive technique for the detection of known or unknown somatic mutations in other genes.

Value of KRAS, BRAF, and PIK3CA Mutations and Survival Benefit from Systemic Chemotherapy in Colorectal Peritoneal Carcinomatosis

  • Sasaki, Yusuke;Hamaguchi, Tetsuya;Yamada, Yasuhide;Takahashi, Naoki;Shoji, Hirokazu;Honma, Yoshitaka;Iwasa, Satoru;Okita, Natsuko;Takashima, Atsuo;Kato, Ken;Nagai, Yushi;Taniguchi, Hirokazu;Boku, Narikazu;Ushijima, Toshikazu;Shimada, Yasuhiro
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.539-543
    • /
    • 2016
  • Background: It is well known that peritoneal carcinomatosis (PC) from colorectal cancer (CRC) is associated with a poor prognosis. However, data on the prognostic significance of modern chemotherapy containing bevacizumab, cetuximab or panitumumab are not available. Materials and Methods: This retrospective review concerned 526 patients with metastatic CRC who were classified into two groups according to the presence or absence of PC, and were treated with systemic chemotherapy, with or without bevacizumab or anti-EGFR antibodies. The genetic background, in particular KRAS, BRAF, and PIK3CA gene mutations, and overall survival (OS) were compared between the two groups. Results: The median OS values were 23.3 and 29.1 months for PC and non-PC patients, respectively (hazard ratio [HR]=1.20; p=0.17). Among all patients, tumor location, number of metastatic sites and BRAF mutation status were significant prognostic factors, whereas the presence of PC was not. In the PC group, chemotherapy with bevacizumab resulted in a significantly longer OS than forchemotherapy without bevacizumab (HR=0.38, p<0.01), but this was not the case in the non-PC group (HR=0.80, p=0.10). Furthermore, the incidence of the BRAF V600E mutation was significantly higher in PC than in non-PC patients (27.7% versus 7.3%, p<0.01). BRAF mutations displayed a strong correlation with shorter OS in non-PC (HR=2.26), but not PC patients (HR=1.04). Conclusions: Systemic chemotherapy, especially when combined with bevacizumab, improved survival in patients with PC from CRC as well as non-PC patients. While BRAF mutation demonstrated a high frequency in PC patients, but it was not associated with prognosis.

Lung Adenocarcinoma Gene Mutation in Koreans: Detection Using Next Generation Sequence Analysis Technique and Analysis of Concordance with Existing Genetic Test Methods (한국인의 폐선암 유전자 돌연변이: 차세대 염기서열 분석법을 이용한 검출 및 기존 유전자 검사법과의 일치도 분석)

  • Jae Ha BAEK;Kyu Bong CHO
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.1
    • /
    • pp.16-28
    • /
    • 2023
  • Lung adenocarcinoma accounts for about 40% of all lung cancers. With the recent development of gene profiling technology, studies on mutations in oncogenes and tumor suppressor genes, which are important for the development and growth of tumors, have been actively conducted. Companion diagnosis using next-generation sequencing helps improve survival with targeted therapy. In this study, formalin-fixed paraffin-embedded tissues of non-small cell lung cancer patients were subjected to hematoxylin and eosin staining for detecting genetic mutations that induce lung adenocarcinoma in Koreans. Immunohistochemical staining was also performed to accurately classify lung adenocarcinoma tissues. Based on the results, next-generation sequencing was applied to analyze the types and patterns of genetic mutations, and the association with smoking was established as the most representative cause of lung cancer. Results of next-generation sequencing analysis confirmed the single nucleotide variations, copy number variations, and gene rearrangements. In order to validate the reliability of next-generation sequencing, we additionally performed the existing genetic testing methods (polymerase chain reaction-epidermal growth factor receptor, immunohistochemistry-anaplastic lymphoma kinase (D5F3), and fluorescence in situ hybridiation-receptor tyrosine kinase 1 tests) to confirm the concordance rates with the next-generation sequencing test results. This study demonstrates that next-generation sequencing of lung adenocarcinoma patients simultaneously identifies mutation.