• Title/Summary/Keyword: KPX(Korea Power Exchange)

Search Result 66, Processing Time 0.036 seconds

Monthly & regional utilization factor of PV Plants in 2009, Korea (2009년 태양광발전소 월별 및 지역별 이용률 분석)

  • Kim, Yangil;Yang, Sungbae;Ryu, Sungho;Oh, Seokhwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.65.1-65.1
    • /
    • 2010
  • KPX(Korea Power Exchange) has been supervising FIT(Feed-in-tariff) for renewable energy power plants and supported 289MW photovoltaic power plants with Electric Power Industry Basis Fund in 2009. In this paper, we'll analyze utilization factor of these PV power plants in 2009 and for the latest 3 years and finally utilization factor of other renewable energy power plants in 2009.

  • PDF

Evaluation of Optimal Transfer Capability in the Haenam-Jeju HVDC System Based on Cost Optimization

  • Son Hyun-Il;Kim Jin-O;Lee Hyo-Sang;Shin Dong-Joon
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.303-308
    • /
    • 2005
  • The restructure of the electrical power industry is accompanied by the extension of the electrical power exchange. One of the key pieces of information used to determine how much power can be transferred through the network is known as available transfer capability (ATC). The traditional ATC deterministic approach is based on the severest case and it involves a complex procedure. Therefore, a novel approach for A TC calculation is proposed using cost optimization in this paper. The Jeju Island interconnected HVDC system has inland KEPCO (Korean Electric Power Corporation) systems, and its demand is increasing at the rate of about $\10[%]$ annually. To supply this increasing demand, the capability of the HVDC system must be enlarged. This paper proposes the optimal transfer capability of the HVDC system between Haenam in the inland and Jeju in Cheju Island through cost optimization. The cost optimization is based on generating cost in Jeju Island, transfer cost through Jeju-Haenam HVDC system and outage cost with one depth (N-1 contingency).

A Study on Benefit Sides of Demand Response Customer Baseline with Outdoor Temperature Variable about Load Aggregator (수요관리사업자에 대한 외부온도 변화에 따른 수요반응 CBL의 편익에 관한 연구)

  • Kim, Seong-Cheol;Song, Ha-Na
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.44-50
    • /
    • 2014
  • This paper describes reasonable methods by considering change of outdoor temperature into Customer Baseline Load(CBL) of Demand Resources in Smart Demand Resource Market, which controls peak power demand and maintains reliability of power system. The Smart Demand Resouce Market, which KPX(Korea Power Exchange) implement, is explained and then effects for CBL calculated by considering temperature correction factor are established. Finally, four methods for calculation of CBL are proposed and those results are compared and analyzed.

The SPS Algorithm for Maintaining Dynamic Stability in Power Systems (과도불안정 현상에 대비한 SPS 알고리즘의 구현)

  • Park, Jong-Young;Park, Jong-Keun;Chu, Jin-Bu;Jan, Byung-Tae;Oh, Hwa-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.164-166
    • /
    • 2002
  • 발전기 주변의 선로에서 사고가 발생하였을 때, 발전기의 출력이 선로를 통해서 흐르지 못해 그 결과 과도불안정현상이 생길 수 있다. 이러한 과도불 안정현상을 막기 위한 SPS가 설치, 운영되고 있는데 그 알고리즘의 하나로서 동면적법을 기반으로 한 알고리즘을 구현하였다. 대상 발전기군을 하나의 등가 발전기로 모델링 한 다음, 유효전력과 무효전력 출력의 측정값을 이용해서 계산을 통해 위상각-출력 곡선을 구하였다. 그런 다음 현재의 운동에너지와 안정도 한계값인 임계에너지의 값을 비교하여 안정도를 판별하고, 만일 불안정한 경우 필요한 발전기의 탈락량을 계산하였다. 이 알고리즘을 6기 5모선 계통에서 모의하여 결과를 검증하였다.

  • PDF

신재생 확대에 따른 도전과제와 계통운영자의 대응방안

  • Lee, Ho-Cheol;Yang, Min-Seung;Jo, Gang-Uk
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.3 no.3
    • /
    • pp.56-61
    • /
    • 2017
  • With the appearance of the climate change concerns, energy transition to renewable energy is accelerating over the world. Korea, a latecomer to the renewable energy sector, has also been unable to avoid energy transition. The government is promoting strong goals for expansion of renewable energy. However, switching from stable and controllable conventional generation to intermittent and uncontrollable renewable generation will be a big challenge for the electric power industry. Korea Power Exchange(KPX), which is responsible for the planning and operation of the electric power industry in Korea, is trying to improve measures in various fields such as the implementation of real-time unit commitment and additional real-time markets in order to cope with the volatility and intermittency of renewable energy.

  • PDF

Design and Implementation of KPX's next control center (전력거래소 차기 계통운영시스템 설계에 관한 연구)

  • Choi, Young-Min;Park, Min-Ryung;Lee, Jin-Su;Lee, Gun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.380-381
    • /
    • 2011
  • 전력거래소는 2014년 나주본사이전 이후 1억kW 대용량 전력계통을 운영하기 위한 차기 계통운영시스템(이하 차기EMS) 구축을 계획하고 있다. EMS(Energy Management System)는 전국의 발, 변전소에서 계통정보를 실시간으로 취득하여 전력계통을 감시하며, 연료비 기반의 최적 경제점을 찾아 발전기를 제어하고, 전력계통을 수식화한 상태추정 결과를 기반으로 상정사고분석, 고장전류계산 등 전력계통운영을 위한 종합시스템이다. 국내 EMS의 역사는 1979년 미국의 L&N 시스템 도입을 시작으로 1988년 일본의 Toshiba EMS, 2001년 Alstom사의 NEMS를 구축하여 현재 운영중에 있다. 하지만, 외산 제품 도입에 따른 기술이전, 유지보수의 어려움을 타개하기 위해 2004년 한국형 EMS(이하 K-EMS) 연구개발계획을 수립하고 전력거래소를 주축으로 한 산학연을 구성하여 2010년 K-EMS 개발을 성공적으로 완료하였다. 차기 EMS는 국내 기술력으로 개발된 정부연구과제 성과물인 K-EMS를 기반으로 구축이 이루어지며, 총 3년간의 개발 및 시험과정을 거쳐 실계통운영을 담당할 예정이다. 차기EMS가 설치되어 운영예정인 급전소는 전력수급 균형유지와 발전소 운영 총괄 지휘 및 765kV, 345kV 송전망 운영역할을 담당할 나주급전소와 154kV 비수도권 송전망 운영을 담당할 천안급전소, 154kV 수도권 송전망 운영을 책임질 서울급전소 이상 3곳이다. 차기EMS는 발전 및 송, 변전 설비의 대형화, 다양한 FACTS 설비, 신재생에너지원으로 대표되는 분산전원의 등장과 같은 급변하는 전력계통 변화에 능동적인 역할을 성공적으로 수행할 것으로 기대하고 있다.

  • PDF

Generator Testing and Model Validation for Thermal Plant (전력계통 안정성 향상을 위한 발전기 제어계 특성시험 및 모델링)

  • Cha, S.T.;Kim, Y.H.;Oh, S.I.;Choi, J.H.;Shin, J.H.;Shim, E.B.;Kwak, N.H.;Son, H.I.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.473-474
    • /
    • 2007
  • The Jeju power grid experienced several major power disturbances over the last decade. The postmortem studies of the incidents indicated that some of the generating units did not respond as predicted by system analysis & studies. Consequently, the Korean Power Exchange (KPX) mandated that all units (generators, excitation, governor and turbine systems) in the Korean network greater than or equal to 20MVA be tested to verify the generator reactive power limits as well as the dynamic model data being used for system studies. This paper presents field experiences of the authors in testing and modeling of steam turbines and their associated governors during the generator and model validation.

  • PDF

A Study on Determining an Appropriate Power Trading Contracts to Promote Renewable Energy Systems

  • Choi, Yeon-Ju;Kim, Sung-Yul
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.623-630
    • /
    • 2018
  • The renewable energy systems have been in the spotlight as an alternative for environmental issues. Therefore, the governmental policies are being implemented to spread of promote power generation system using renewable energy in various countries around the world. In addition, Korea has also developed a policy called the power trading contract which can profit from electricity produced from renewable power generation system through Korea Electric Power Corporation (KEPCO) and Korea Power Exchange (KPX). As a result, the power trading contracts can trade power after self-consuming in-house by using small-scale renewable power system for residential customers as well as electricity retailers. The power trading contracts applicable as a small-scale power system have a 'Net metering (NM)' and a 'Power Purchase Agreement (PPA)', and these two types of power trading contracts trade surplus power, but payment method of each power trading is different. The microgrid proposed in this paper is based on grid connected microgrid using Photovoltaic (PV) system and Energy Storage System (ESS), that supplied power to residential demand, we evaluate the operation cost of microgrid by power demand in each power trading contracts and propose the appropriate power trading contracts according to electricity demand.

Locational Marginal Price Forecasting Using Artificial Neural Network (역전파 신경회로망 기반의 단기시장가격 예측)

  • Song Byoung Sun;Lee Jeong Kyu;Park Jong Bae;Shin Joong Rin
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.698-700
    • /
    • 2004
  • Electric power restructuring offers a major change to the vertically integrated utility monopoly. Deregulation has had a great impact on the electric power industry in various countries. Bidding competition is one of the main transaction approaches after deregulation. The energy trading levels between market participants is largely dependent on the short-term price forecasts. This paper presents the short-term System Marginal Price (SMP) forecasting implementation using backpropagation Neural Network in competitive electricity market. Demand and SMP that supplied from Korea Power Exchange (KPX) are used by a input data and then predict SMP. It needs to analysis the input data for accurate prediction.

  • PDF

The Research for the Change of Load Demand in Wintertime by the Influence of a Climate (기후의 영향에 따른 동절기 전력수요 변화에 대한 연구)

  • Ahn, Dae-Hoon;Song, Kwang-Heon;Choi, Eun-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.47-54
    • /
    • 2009
  • These clays, because of world economy recession, exports decreased rapidly and manufacturing industry growth fell into negative. Industrial power consumption has been reduced about 7[%] that forms 53[%] of total load demand in Korea. And also, daily load pattern has been changed in several ways because of power consumption decrease influenced by domestic demand recession and heating power load decreased by the rise in temperature. This research analyzes, by analyzing maximum load demand, average load demand, load pattern based on relative factor, and load sensitiveness in accordance with temperature, that maximum load demand is more sensitive to atmospheric temperature than GDP growth rate and average load demand tends to be reduced according to GDP growth rate. I suppose KPX could operate the network system economically and safely by forecasting load demand in winter and summer seasons based on the results.