• Title/Summary/Keyword: KOrea Multi-Purpose SATellite-3

Search Result 103, Processing Time 0.023 seconds

A Study on the Analysis of Geometric Accuracy of Tilting Angle Using KOMPSAT-l EOC Images

  • Seo, Doo-Chun;Lim, Hyo-Suk
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.53-57
    • /
    • 2003
  • As the Korea Multi-Purpose Satellite-I (KOMPSAT-1) satellite can roll tilt up to $\pm$45$^{\circ}$, we have analyzed some KOMPSAT-1 EOC images taken at different tilt angles for this study. The required ground coordinates for bundle adjustment and geometric accuracy are obtained from the digital map produced by the National Geography Institution, at a scale of 1:5,000. Followings are the steps taken for the tilting angle of KOMPSAT-1 to be present in the evaluation of geometric accuracy of each different stereo image data: Firstly, as the tilting angle is different in each image, the characteristic of satellite dynamic must be determined by the sensor modeling. Then the best sensor modeling equation should be determined. The result of this research, the difference between the RMSE values of individual stereo images is mainly due to quality of image and ground coordinates instead of tilt angle. The bundle adjustment using three KOMPSAT-1 stereo pairs, first degree of polynomials for modeling the satellite position, were sufficient.

  • PDF

A New Business Model of the Multi-channel Satellite Webcasting Service (다채널 위성인터넷방송서비스의 비즈니스모델에 관한 연구 -네트워크외부성 유.무에 따른 비교분석을 중심으로-)

  • 연규동
    • Journal of Korea Technology Innovation Society
    • /
    • v.4 no.3
    • /
    • pp.342-354
    • /
    • 2001
  • The appearance of on-demand business model of multimedia contents is one of the biggest changes in the broadband Internet which aims at the high-speed Internet users. Currently the interest in the webcasting service, a new converged service of the broadcasting and the telecommunications, has been increased. However the quality of service is not guaranteed due to the bottleneck problem in a middle-mile as the fundamental limit of the Internet, and has not been improved greatly due to the small-scaled operators of the webcasting services. This study suggests a new business model of the multi-channel satellite webcasting service based on the satellite multicasting and content delivery network, which guarantees the quality of service and channelizes the contents by the type or by the special purpose.

  • PDF

Absolute Radiometric Calibration for KOMPSAT-3 AEISS and Cross Calibration Using Landsat-8 OLI

  • Ahn, Hoyong;Shin, Dongyoon;Lee, Sungu;Choi, Chuluong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.291-302
    • /
    • 2017
  • Radiometric calibration is a prerequisite to quantitative remote sensing, and its accuracy has a direct impact on the reliability and accuracy of the quantitative application of remotely sensed data. This paper presents absolute radiometric calibration of the KOMPSAT-3 (KOrea Multi Purpose SATellite-3) and cross calibration using the Landsat-8 OLI (Operational Land Imager). Absolute radiometric calibration was performed using a reflectance-based method. Correlations between TOA (Top Of Atmosphere) radiances and the spectral band responses of the KOMPSAT-3 sensors in Goheung, South Korea, were significant for multispectral bands. A cross calibration method based on the Landsat-8 OLI was also used to assess the two sensors using near simultaneous image pairs over the Libya-4 PICS (Pseudo Invariant Calibration Sites). The spectral profile of the target was obtained from EO-1 (Earth Observing-1) Hyperion data over the Libya-4 PICS to derive the SBAF (Spectral Band Adjustment Factor). The results revealed that the TOA radiance of the KOMPSAT-3 agree with Landsat-8 within 5.14% for all bands after applying the SBAF. The radiometric coefficient presented here appears to be a good standard for maintaining the optical quality of the KOMPSAT-3.

Validation of Geostationary Earth Orbit Satellite Ephemeris Generated from Satellite Laser Ranging

  • Oh, Hyungjik;Park, Eunseo;Lim, Hyung-Chul;Lee, Sang-Ryool;Choi, Jae-Dong;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.227-233
    • /
    • 2018
  • This study presents the generation and accuracy assessment of predicted orbital ephemeris based on satellite laser ranging (SLR) for geostationary Earth orbit (GEO) satellites. Two GEO satellites are considered: GEO-Korea Multi-Purpose Satellite (KOMPSAT)-2B (GK-2B) for simulational validation and Compass-G1 for real-world quality assessment. SLR-based orbit determination (OD) is proactively performed to generate orbital ephemeris. The length and the gap of the predicted orbital ephemeris were set by considering the consolidated prediction format (CPF). The resultant predicted ephemeris of GK-2B is directly compared with a pre-specified true orbit to show 17.461 m and 23.978 m, in 3D root-mean-square (RMS) position error and maximum position error for one day, respectively. The predicted ephemeris of Compass-G1 is overlapped with the Global Navigation Satellite System (GNSS) final orbit from the GeoForschungsZentrum (GFZ) analysis center (AC) to yield 36.760 m in 3D RMS position differences. It is also compared with the CPF orbit from the International Laser Ranging Service (ILRS) to present 109.888 m in 3D RMS position differences. These results imply that SLR-based orbital ephemeris can be an alternative candidate for improving the accuracy of commonly used radar-based orbital ephemeris for GEO satellites.

A Conceptual Design of Integrated Receiving end for Multi-Satellite Mission Data Processing (다중위성 운영을 위한 통합 자료처리 시스템의 개념적 설계)

  • Bae, Hee-Jin;Chae, Tae-Byeong;Oh, Seung-Hyeub
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.2
    • /
    • pp.17-22
    • /
    • 2010
  • Establishment of systematic platform is needed for technological progress of receiving of satellite image data with high quality and processing system for product generation and operation related with direct receiving system for satellite from abroad. Besides, it's necessary to develop the integrated data processing system to prohibit similar functions on developing (or being developed) for KOMPSAT-3, KOMPSAT-5 and to operate system efficiently. Therefore, conceptual design of the integrated data processing system is performed considering commercialization of KOMPSAT(Korea Multi-Purpose Satellite) series based on KOMPSAT-2 IRPE on operation in this paper.

KOMPSAT Image Processing and Applications (다목적실용위성 영상처리 및 활용)

  • Lee, Kwangjae;Kim, Younsoo;Choi, Haejin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1171-1177
    • /
    • 2017
  • This special issue introduces recent researches on KOMPSAT(KOrea Multi-Purpose SATellite) image processing and applications. In this paper, the status of KOMPSAT development and national satellite image application policy are introduced and the implications of the papers presented in the special issue are discussed. Satellite image resources and application policy that can be utilized through continuous satellite development are considered to be systematically prepared. Therefore, if data processing and application technology development for various fields such as forest and urban change detection, image correction technology introduced in this paper are continuously carried out, it is expected that the competitiveness of national satellite image will be further strengthened.

A Test Result on the Positional Accuracy of Kompsat-3A Beta Test Images

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.133-142
    • /
    • 2016
  • KOMPSAT-3A (KOrea Multi-Purpose SATellite-3A) was launched in March 25 2015 with specification of 0.5 meters resolution panchromatic and four 2.2 meters resolution multi spectral sensors in 12km swath width at nadir. To better understand KOMPSAT-3A positional accuracy, this paper reports a test result on the accuracy of recently released KOMPSAT-3A beta test images. A number of ground points were acquired from 1:1,000 digital topographic maps over the target area for the accuracy validation. First, the original RPCs (Rational Polynomial Coefficients) were validated without any GCPs (Ground Control Points). Then we continued the test by modeling the errors in the image space using shift-only, shift and drift, and the affine model. Ground restitution accuracy was also analyzed even though the across track image pairs do not have optimal convergence angle. The experimental results showed that the shift and drift-based RPCs correction was optimal showing comparable accuracy of less than 1.5 pixels with less GCPs compared to the affine model.

Implementation of Matrix Receiving Structure for Versatile Multi-Mission LEO Operations (저궤도 다중위성 운용을 위한 매트릭스 구조의 수신 채널 구현)

  • Park, Durk-Jong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.10
    • /
    • pp.1001-1007
    • /
    • 2013
  • In the case of multi-mission LEO(Low Earth Orbit) operations, depending on the orbit of each satellite, one ground site is supposed to be communicated with more than two satellites at the same time. On top of that, image data processing system is generally mission-specific and 1:1 backup configuration. For the reason, if ground site has smaller number of antenna than that of satellite, interface with image data processing system would be very complicated. In this paper, considering that two LEO satellites can be operating and image data recording unit in redundancy can be easily plug-in, the implementation of matrix receiving structure is described. This matrix receiving structure has been validated from KOMPSAT-2 and -3(KOrea Multi-Purpose SATellite-2 and -3) since KOMPSAT-3 was launched in May, 2012. This structure will be applied for the KOMPSAT-3A and -5 through its expandability.

ITU Policy Trend of Japan, Russia and China about Satellite Network Frequency and Orbit (위성망 주파수 및 궤도에 대한 일본, 러시아 및 중국의 ITU 정책 동향)

  • Kim, Young-Wook;Chung, Dae-Won
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.23-31
    • /
    • 2009
  • Insufficient problem about resource of satellite network frequency and orbit was seriously issued, because commercialization of a satellite has been successfully achieved since 1980s. Therefore, each countries execute an advantageous policy to them for guarantying and protecting satellite network resource and perform study for preoccupying new satellite network resource. Understanding and insight of policy about occupying satellite network resource of world each countries are landmark of satellite network task. In this paper, policies of Japan, Russia and China located around Korea are especially described. Also, in this paper, the administration organization of Japan, Russia and China which are to manage satellite network is described. The KARI(Korea Aerospace Research Institute) secured satellite network frequency and orbit of the KOMPSAT(KOrea Multi Purpose SATellite)-1 and the KOMPSAT-2 and is also going to register satellite network of the KOMPSAT-3 and the KOMPSAT-5. When satellite network coordination with nearby three countries will be needed, understanding of political policy and organization let the Korea acquire coordination agreement of the other administration.

  • PDF

KOMPSAT-1 Satellite Orbit Control using GPS Data

  • Lee, Jin-Ho;Baek, Myuog-Jin;Koo, Ja-Chun;Yong, Ki-Lyuk;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.2
    • /
    • pp.43-49
    • /
    • 2000
  • The Global Positioning System (GPS) is becoming more attractive navigation means for LEO (Low Earth Orbit) spacecraft due to the data accuracy and convenience for utilization. The anomalies such as serious variations of Dilution-Of-Precision (DOP), loss of infrequent 3-dimensional position fix, and deterioration of instantaneous accuracy of position and velocity data could be observed, which have not been appeared during the ground testing. It may cause lots of difficulty for the processing of the orbit control algorithm using the GPS data. In this paper, the characteristics of the GPS data were analyzed according to the configuration of GPS receiver such as position fix algorithm and mask angle using GPS navigation data obtained from the first Korea Multi-Purpose Satellite (KOMPSAT). The problem in orbit tracking using GPS data, including the infrequent deterioration of the accuracy, and an efficient algorithm for its countermeasures has also been introduced. The reliability and efficiency of the modified algorithm were verified by analyzing the effect of the results between algorithm simulation using KOMPSAT flight data and ground simulator.

  • PDF