• Title/Summary/Keyword: KOWACO 홍수분석

Search Result 10, Processing Time 0.024 seconds

The Establishment and Application of Hydraulic Channel Routing Model on the Nakdong River (II) Model Application (낙동강 유역 수리학적 하도추적 모형 구축 및 적용 (II) 홍수사상의 적용)

  • Lee, Eul Rae;Kim, Sang Ho
    • Journal of Wetlands Research
    • /
    • v.8 no.1
    • /
    • pp.83-96
    • /
    • 2006
  • In this study, hydraulic flood routing is performed by 1-Di. unsteady flow model, FLDWAV on the downstream of Nakdong river. For input information, KOWACO Rainfall-Runoff Model is used and resonable boundary condition is constructed. As the result of the application about the past flood event, good agreement of comparison with observed and calculated values are show in the interesting sites, Jindong and Samrangjin. Additionally, estuary barrage's WSL evaluation procedure is enhanced to accurate calculation, and it is defined by downstream boundary condition in Nakdiong river. The new regressive equation to calculate the predicted tide value is developed by considering the astronomical tide and past observed tide value at Nakdong estuary barrage. The guideline's construction of the new application and flood forecasing system of other river basins is possible by using this studied results.

  • PDF

A Study on Parameter Computation of Storage Function Model for the Han River Basin (한강유역에 대한 저류함수모형의 매개변수 산정에 관한 연구)

  • Jeon Yong Woon;Jeong Dong Kug;Lee Bae Sung;Jeon Kyong Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.725-730
    • /
    • 2005
  • 본 연구에서는 저류함수모형을 이용하여 홍수유출분석을 좀더 정확하게 모의하기 위해 선행되어야 하는 유역에 대한 매개변수를 산정하였다. 매개변수를 산정함에 앞서 민감도분석을 실시하고, 연구 대상유역인 한강유역에 대하여 유역별 지형인자를 새로이 추출하였다. 저류함수모형의 중요 매개변수인 유출상수는 홍수직전유출고와의 관계를 이용하여 추정하였으며, 저류상수는 유역별 호우사상에 따른 최적의 저류상수식을 도출함으로써 호우의 특성 및 유역에 대한 물리적인 특성을 반영한 매개변수를 산정하였다. 재산정된 매개변수의 개선효과를 살펴보기 위해 KOWACO 모형과 한강홍수통제소 모형의 기존 매개변수를 이용한 모형 수행결과를 비교분석하였다. 분석결과 기존의 매개변수를 이용할 경우 한강홍수통제소 모형보다는 KOWACO 모형이 우수하며, 개선된 매개변수를 이용할 경우 관측 유출수문곡선에 좀더 근사한 모의결과를 나타내었다.

  • PDF

The Study of Hydraulic Channel Routing Model Considering Tide Influence on the Downstream of the Nakdong River (조위를 고려한 낙동강 하류부 수리학적 홍수추적 모형의 연구)

  • Lee, Eul-Rae;Kim, Jong-Rae;Shin, Cheol-Kyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1006-1010
    • /
    • 2005
  • 본 연구는 1차원 부정류 해석모형인 FLDWAV 모형을 이용하여 댐방류 또는 상류지점의 지류유입유량과 하류단의 조위에 따른 영향이 낙동강 하류 홍수위에 미치는 영향을 해석하고, 이를 GUI 시스템과의 연계를 통한 효율적인 홍수관리시스템을 구축하는데 있다. 또한 수리학적 모형수행을 위한 입력자료가 될 수 있는 수문학적 모형과의 연계방법을 제시하였으며 예측조위와 하구둑 방류량을 고려한 합리적인 하류경계조건을 지정하기 위해 회귀방정식에 의한 하류부 예측조위산정방법을 제시하였다. 본 연구에서는 적포교 수위관측소를 기점으로 하여 낙동강 하구둑까지 110km를 대상구간으로 설정하였다. 상류경계조건으로는 적포교지점의 유입량과 남강, 밀양강, 양산천 등의 지류유입량 등을 현재 한국수자원공사에서 적용하고 있는 KOWACO 홍수분석모형에 의해서 산정하였다. 또한 하류경계조건은 하구둑 내수위의 실측자료를 이용하였으며 향후 예측을 위한 적용성을 위해서 하구둑의 유입량과 예측조위조건의 상관성을 이용하여 회귀식을 산정하였다. 또한 해석결과의 효율적인 도시를 위해서 홍수추적 모형과 연계한 GUI 시스템을 구축하였다. 과거 발생한 홍수사상에 대해서 적용한 결과 실측치와 관측치가 유사한 수위 거동을 나타내고 있었다. 본 연구의 결과를 이용하여 다른 수계에서도 홍수예경보시스템의 구축을 위한 수리학적 모형과 수문학적 모형의 연계를 통한 좀더 신뢰성있고 정확한 해석결과를 제시할 수 있을것으로 판단된다.

  • PDF

The Establishment and Application of Hydraulic Channel Routing Model on the Nakdong River (I) Theory and Evaluation of Travel Time (낙동강 유역 수리학적 하도추적 모형 구축 및 적용 (I) 이론 및 도달시간 산정)

  • Lee, Eul Rae;Shin, Chul Kyun;Kim, Sang Ho
    • Journal of Wetlands Research
    • /
    • v.8 no.1
    • /
    • pp.73-82
    • /
    • 2006
  • In this study, the hydraulic channel routing model is applied to analyze water surface elevation pattern on the Nakdong river in flood cases. The procedure to apply FLDWAV model is presented to solve the Saint-Venant Equations by using four points implicit finite differential scheme. And the flood travel time is studied for reasonable dam management. As this results, variable assumption and constraint are followed to evaluate flood travelling time by hydraulic model. A guideline of reasonable dam's decision making considering downstream effect is showed by this constructed model, and scientific hydraulic analysis is possible by it.

  • PDF

Comparison of Runoff Analysis Between GIS-based Distributed Model and Lumped Model for Flood Forecast of Dam Watershed (댐유역 홍수예측을 위한 GIS기반의 분포형모형과 집중형모형의 유출해석 비교)

  • Park, Jin-Hyeog;Kang, Boo-Sik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.171-182
    • /
    • 2006
  • In this study, rainfall-runoff analysis was performed for Yongdam watershed($930km^2$) using KOWACO flood analysis model based on Storage Function Method as lumped hydrologic model and Vflo which was developed for real-time flood prediction by University of Oklahoma. The results shows that, the hydrographs of lumped and distributed model with uncalibrated parameters which estimated from physical or experimental relationship show significant biases from observed hydrographs. However, the hydrograph at Cheoncheon site from the distributed model follows the actual hydrograph to an extent that no more calibration is necessary. It encourages that distributed model can have advantages for application in real-time flood forecasting as physically based distributed hydrologic model which can construct event-independent basin parameter group.

  • PDF

Assessment of the Inundation Area and Volume of Tonle Sap Lake using Remote Sensing and GIS (원격탐사와 GIS를 이용한 Tonle Sap호의 홍수량 평가)

  • Chae, Hyosok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.96-106
    • /
    • 2005
  • The ability of remote sensing and GIS technique, which used to provide valuable informations in the time and space domain, has been known to be very useful in providing permanent records by mapping and monitoring flooded area. In 2000, floods were at the worst stage of devastation in Tonle Sap Lake, Mekong River Basin, for the second time in records during July and October. In this study, Landsat ETM+ and RADARSAT imagery were used to obtain the basic information on computation of the inundation area and volume using ISODATA classifier and segmentation technique. However, the extracted inundatton area showed only a small fraction than the actually inundated area because of clouds in the imagery and complex ground conditions. To overcome these limitations, the cost-distance method of GIS was used to estimate the inundated area at the peak level by integrating the inundated area from satellite imagery in corporation with digital elevation model (DEM). The estimated inundation area was simply converted with the inundation volume using GIS. The inundation volume was compared with the volume based on hydraulic modeling with MIKE 11. which is the most poppular among the dynamic river modeling system. The method is suitable for estimating inundation volume even when Landsat ETM+ has many clouds in the imagery.

  • PDF

Development of a Monitoring Technique of Dryness and Wetness in Watershed using Climatic Water Budget (기후학적 물수지에 의한 유역의 건조 및 습윤 상황 감시 기법 개발)

  • Shin, Sha-Chul;Hwang, Man-Ha;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.173-184
    • /
    • 2008
  • Climatic water balance has been applied to obtain quantity of various hydrologic components. Hydrologic information is estimated by comparison between rainfall and evapotranspiration under complex terrain condition. Water deficit is defined as that subtraction of actual supply from climatic demand. The water deficit will occur, when monthly evapotranspiration exceed monthly rainfall. Contrary water surplus is defined as that surplus water after meeting the demand by plants. The water surplus will be occurred when monthly rainfall exceeds monthly evapotranspiration. Finally, the discrete moisture indices were calculated and mapped for the whole watershed to estimate dryness and wetness status using the climatic water balance approach. The result of this study can properly interpret the real drought and non drought. Based upon the results, it can be concluded that the climatic water balance model is useful to monitor water conditions for the watershed.

Analysis of Hydraulic Effects of Singok Submerged Weir in the Lower Han River (한강하류부 신곡수중보의 수리학적 영향분석)

  • Kim, Sang-Ho;Kim, Won;Lee, Eul-Rae;Choi, Kyu-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.5 s.154
    • /
    • pp.401-413
    • /
    • 2005
  • This study analyzed the hydraulic effects of Singok submerged weir in the lower Han River. 1-D hydraulic flood routing model was used and calibration and verification were performed using 8 flood or nonflood events. Flow characteristics were analyzed using various outflows of Paldang Dam and tidal data of the Yellow Sea. Water level increase effects by establishment of Singok submerged weir were as following, when maximum flood tidal was 2.4m, highest water level increased about 0.65m, and lowest water level increased about 1.25m in the downstream of Jamsil submerged weir. In Hangang Bridge, due to the Singok submerged weir, when maximum flood tidal was 2.4m, tidal range was 0.07m and decrement of tidal range was about $90\%$. And when maximum flood tidal was 5.5m, tidal range was 1.6m and decrement of tidal range was about $35\%$. When the outflow of Paldang Dam was over 20,000cms, tidal range was below about 0.06m, and tidal effect did not appear hardly.

The Cause of Metalimnetic DO Minima in Andong Reservoir, Korea (안동호에서 중층 저산소층 형성의 요인 분석)

  • Park, Jung-Won;Shin, Jae-Ki;Park, Jae-Chung
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.1-12
    • /
    • 2006
  • Distributions of water temperature and DO profiles were investigated in Andong Reservoir from 1992 to 2004. Thermal stratification began to form from May of every year. Increasing water temperature of epilimnion, temperature difference between epilimnion and hypolimnion increased until August. Lower oxygen layer was formed at metalimnion from June or July of every year and there were 2 layers depending on each year. The two lower oxygen layers were affected by rainfall and inflow between July and September when thermal stratification was formed. The metalimnetic oxygen minima strongly formed at 2 layers, upper and lower part, when the average rainfall and inflow were ${\geqq}$ 170 mm, ${\geqq}$ 50 $m^3\;sec^{-1}$, respectively. It formed weakly when they were > 400 mm and > 200 $m^3\;sec^{-1}$ for one month. The upper part of low oxygen layers formed on the interface of epilimnion and metalimnion showed larger decreasing rate of DO than temperature and it disappeared around November. The lower part of those farmed on interface of metalimnion and hypolimnion existed until December and disappeared in January, this layer showed larger decreasing rate of temperature than DO. DO increased between the upper and lower part of the low oxygen layers. DO on hypolimnion increased under metalimnion and dramatically decreased near the bottom of the reservoir. Temperature of the inflow during rainy season was similar to that of the reservoir's metalimnion, DO was similar or higher and BOD, COD and SS increased. Density layer caused by turbidity was formed in metalimnion, and turbidity increased under the upper part (oxygen increasing layer) of metalimnetic DO minima layers reaching the maximum at the direct upper part of the lower DO minima layer. The upper part of DO minima layers formed on the interface of epilimnion and metalimnion is related to organic activity on the surface, and the lower part of those was considered to be the result of turbid water inflow to metalimnion during rainy season.