Recently, there is a growing body of literature that suggests that information inefficiency is one of the causes of the asymmetric volatility. If this explanation for the asymmetric volatility is appropriate, then innovations, such as the introduction of futures, may be expected to impact the asymmetric volatility of stock market. As transaction costs and margin requirements in the futures market are lower than those in the spot market, new information is transmitted to futures prices more quickly and affects spot prices through arbitrage trading with spots. Also, the merit of the futures market may attract noise traders away from the spot market to the futures market. This study examines the impact of futures on the asymmetry of stock market volatility. If the asymmetric volatility is significant lower post-futures and exist in the futures market, it has validity that the asymmetric volatility is caused by information inefficiency in the spot market. The data examined are daily logarithmic returns on KOSPI 200 stock price index from January 4, 1993 to December 26, 2000. To examine the existence of the asymmetric volatility in the futures market, logarithmic returns on KOSPI 200 futures are used from May 4, 1996 to December 26, 2000. We used a conditional mode of TGARCH(threshold GARCH) of Glosten, Jagannathan and Runkel(1993). Pre-futures the spot market exhibits significant asymmetric responses of volatility to news and post-futures asymmetries are significantly lower, irrespective of bear market and bull market. The results suggest that the introduction of stock index futures has an effect on the asymmetric volatility of the spot market and are inconsistent with leverage being the sole explanation of asymmetry. However, it is found that the volatility of futures is not so asymmetric as expected.
Journal of Korean Society of Industrial and Systems Engineering
/
v.37
no.4
/
pp.202-211
/
2014
Pairs trading is a type of arbitrage investment strategy that buys an underpriced security and simultaneously sells an overpriced security. Since the 1980s, investors have recognized pairs trading as a promising arbitrage strategy that pursues absolute returns rather than relative profits. Thus, individual and institutional traders, as well as hedge fund traders in the financial markets, have an interest in developing a pairs trading strategy. This study proposes pairs trading rules (PTRs) created from a price ratio between securities (i.e., stock index futures) using rough set analysis. The price ratio involves calculating the closing price of one security and dividing it by the closing price of another security and generating Buy or Sell signals according to whether the ratio is increasing or decreasing. In this empirical study, we generate PTRs through rough set analysis applied to various technical indicators derived from the price ratio between KOSPI 200 and S&P 500 index futures. The proposed trading rules for pairs trading indicate high profits in the futures market.
System trading is becoming more popular among Korean traders recently. System traders use automatic order systems based on the system generated buy and sell signals. These signals are generated from the predetermined entry and exit rules that were coded by system traders. Most researches on system trading have focused on designing profitable entry and exit rules using technical indicators. However, market conditions, strategy characteristics, and money management also have influences on the profitability of the system trading. Unexpected price deviations from the predetermined trading rules can incur large losses to system traders. Therefore, most professional traders use strategy portfolios rather than only one strategy. Building a good strategy portfolio is important because trading performance depends on strategy portfolios. Despite of the importance of designing strategy portfolio, rule of thumb methods have been used to select trading strategies. In this study, we propose a SVM-based strategy portfolio management system. SVM were introduced by Vapnik and is known to be effective for data mining area. It can build good portfolios within a very short period of time. Since SVM minimizes structural risks, it is best suitable for the futures trading market in which prices do not move exactly the same as the past. Our system trading strategies include moving-average cross system, MACD cross system, trend-following system, buy dips and sell rallies system, DMI system, Keltner channel system, Bollinger Bands system, and Fibonacci system. These strategies are well known and frequently being used by many professional traders. We program these strategies for generating automated system signals for entry and exit. We propose SVM-based strategies selection system and portfolio construction and order routing system. Strategies selection system is a portfolio training system. It generates training data and makes SVM model using optimal portfolio. We make $m{\times}n$ data matrix by dividing KOSPI 200 index futures data with a same period. Optimal strategy portfolio is derived from analyzing each strategy performance. SVM model is generated based on this data and optimal strategy portfolio. We use 80% of the data for training and the remaining 20% is used for testing the strategy. For training, we select two strategies which show the highest profit in the next day. Selection method 1 selects two strategies and method 2 selects maximum two strategies which show profit more than 0.1 point. We use one-against-all method which has fast processing time. We analyse the daily data of KOSPI 200 index futures contracts from January 1990 to November 2011. Price change rates for 50 days are used as SVM input data. The training period is from January 1990 to March 2007 and the test period is from March 2007 to November 2011. We suggest three benchmark strategies portfolio. BM1 holds two contracts of KOSPI 200 index futures for testing period. BM2 is constructed as two strategies which show the largest cumulative profit during 30 days before testing starts. BM3 has two strategies which show best profits during testing period. Trading cost include brokerage commission cost and slippage cost. The proposed strategy portfolio management system shows profit more than double of the benchmark portfolios. BM1 shows 103.44 point profit, BM2 shows 488.61 point profit, and BM3 shows 502.41 point profit after deducting trading cost. The best benchmark is the portfolio of the two best profit strategies during the test period. The proposed system 1 shows 706.22 point profit and proposed system 2 shows 768.95 point profit after deducting trading cost. The equity curves for the entire period show stable pattern. With higher profit, this suggests a good trading direction for system traders. We can make more stable and more profitable portfolios if we add money management module to the system.
If stock market is efficient, any well-devised trading rule can't consistently outperform the average stock market returns. This study aims to verify whether the strategy based on bid-ask volume information can beat the stock market. I suggested a day trading strategy using order imbalance indicator and empirically analyzed its profitability with the KOSPI 200 index futures data from 2001 to 2018. Entry rules are as follows: If BSI is over 50%, enter buy order, otherwise enter sell order, assuming that stock price rises after BSI is over 50% and stock price falls after BSI is less than 50%. The empirical results showed that the suggested trading strategy generated very high trading profit, that is, its annual return runs to minimum 71% per annum even after the transaction costs. The profit was generated consistently during 18 years. This study also improved the suggested trading strategy applying the genetic algorithm, which may help the market practitioners who trade the KOSPI 200 index futures.
Using high-frequency data for 2 years, this study investigates intraday lead-lag relationship between stock index and stock index futures markets in Korea and China. We found that there are some differences in price discovery and volatility transmission between Korea and China after the stock index futures markets was introduced. Following Stoll-Whaley(1990) and Chan(1992), the multiple regression is estimated to examine the lead-lag patterns between the two markets by Newey-West's(1987) heteroskedasticity and autocorrelation consistent covariance matrix(HAC matrix). Empirical results of KOSPI 200 shows that the futures market leads the cash market and weak evidence that the cash market leads the futures market. New market information disseminates in the futures market before the stock market with index arbitrageurs then stepping in quickly to bring the cost-of-carry relation back into alignment. The regression tests for the conditional volatility which is estimated using EGARCH model do not show that there is a clear pattern of the futures market leading the stock market in terms of the volatility even though controlling nonsynchronous trading effects. This implies that information in price innovations that originate in the futures market is transmitted to the volatility of the cash market. Empirical results of CSI 300 shows that the cash market is found to play a more dominant role in the price discovery process after the Chinese index started a sharp decline immediately after the stock index futures were introduced. The new stock index futures markets does not function well in its price discovery performance at its infancy stage, apparently due to high barriers to entry into this emerging futures markets. Based on EGAECH model, the results uncover strong bi-directional dependence in the intraday volatility of both markets.
This study aims to propose technical trading rules for Bitcoin futures and empirically analyze investment performance. Investment strategies include standard trading rules such as VMA, TRB, FR, MACD, RSI, BB, using Bitcoin futures daily data from December 18, 2017 to March 31, 2021. The trend-following rules showed higher investment performance than the comparative strategy B&H. Compared to KOSPI200 index futures, Bitcoin futures investment performance was higher. In particular, the investment performance has increased significantly in Sortino Ratio, which reflects downside risk. This study can find academic significance in that it is the first attempt to systematically analyze the investment performance of standard technical trading rules of Bitcoin futures. In future research, it is necessary to improve investment performance through the use of deep learning models or machine learning models to predict the price of Bitcoin futures.
This paper compares long term equilibrium relation of KOSPI 200 which is underling stock and its futures by using general method fractional cointegration instead of existing integer cointegration. Existence of integer cointegration between two price time series gives much wider information about long term equilibrium relation. These details grasp long term equilibrium relation of two price time series as well as reverting velocity to equilibrium by observing difference coefficient of error term when it renounces from equilibrium relation. The result of this study reveals existence of long term equilibrium relation between KOSPI200 and futures which follow fractional cointegration. Difference coefficient, d, of 'two price time series error term' satisfies 0 < d < 1/2 beside bandwidth parameter, m(173). It means two price time series follow stationary long memory process. This also means impulse effects to balance price of two price time series decrease gently within hyperbolic rate decay. It indicates reverting speed of error term is very low when it bolts from equilibrium. It implies to market maker, who is willing to make excess return with arbitrage trading and hedging risk using underling stock, how invest strategy should be changed. It also insinuates that information transition between KOSPI 200 Index market and futures market does not working efficiently.
Journal of the Korea Academia-Industrial cooperation Society
/
v.5
no.6
/
pp.580-587
/
2004
The purpose of this study is to examine if the trading volume can apply to the short-term forecasting of the futures price change by verificating the casuality between trading volume and futures price in the KOSPI 200 futures market. The outcome of the research is summarized as follows. In the analysis of subordinate periods, based on the yearly time segments, trading volume were found to lead futures price. As for trading volume, it was under comparably greater influence of its self of the past than the return rate of futures. In the analysis of subordinate periods, based on the trend of the futures market, trading volume lead return rate of futures feebly in a bull market. But return rate of futures lead trading volume significantly in a bearish market.
This paper attempts to offer an effective strategy of hedge fund based on trade probability control in the futures market. By using various technical indicators, we create an association rule and transforms it into a trading rule to be used as an investment strategy. Association rules are made by the combination of various technical indicators and the range of individual indicator value. Adjustments of trade probabilities are performed by depending on the rule combinations and it can be utilized to establish an effective investment strategy onto the risk management. In order to demonstrate the superiority of the investment strategy proposed, we analyzed a profitability using the futures index based on KOSPI200. Experiments results show that our proposed strategy could effectively manage and response the dynamics investment risks.
Proceedings of the Korean Operations and Management Science Society Conference
/
1997.10a
/
pp.105-108
/
1997
Previous studies in stock market predictions using artificial intelligence techniques such as artificial neural networks and case-based reasoning, have focused mainly on spot market prediction. Korea launched trading in index futures market (KOSPI 200) on May 3, 1996, then more people became attracted to this market. Thus, this research intends to predict the daily up/down fluctuant direction of the price for KOSPI 200 index futures to meet this recent surge of interest. The forecasting methodologies employed in this research are the integration of genetic algorithm and artificial neural network (GAANN) and the integration of genetic algorithm and case-based reasoning (GACBR). Genetic algorithm was mainly used to select relevant input variables. This study adopts the categorical data preprocessing based on expert's knowledge as well as traditional data preprocessing. The experimental results of each forecasting method with each data preprocessing method are compared and statistically tested. Artificial neural network and case-based reasoning methods with best performance are integrated. Out-of-the Model Integration and In-Model Integration are presented as the integration methodology. The research outcomes are as follows; First, genetic algorithms are useful and effective method to select input variables for Al techniques. Second, the results of the experiment with categorical data preprocessing significantly outperform that with traditional data preprocessing in forecasting up/down fluctuant direction of index futures price. Third, the integration of genetic algorithm and case-based reasoning (GACBR) outperforms the integration of genetic algorithm and artificial neural network (GAANN). Forth, the integration of genetic algorithm, case-based reasoning and artificial neural network (GAANN-GACBR, GACBRNN and GANNCBR) provide worse results than GACBR.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.