• Title/Summary/Keyword: KOMPSAT-2 영상

Search Result 277, Processing Time 0.021 seconds

Spatial Gap-filling of GK-2A/AMI Hourly AOD Products Using Meteorological Data and Machine Learning (기상모델자료와 기계학습을 이용한 GK-2A/AMI Hourly AOD 산출물의 결측화소 복원)

  • Youn, Youjeong;Kang, Jonggu;Kim, Geunah;Park, Ganghyun;Choi, Soyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.953-966
    • /
    • 2022
  • Since aerosols adversely affect human health, such as deteriorating air quality, quantitative observation of the distribution and characteristics of aerosols is essential. Recently, satellite-based Aerosol Optical Depth (AOD) data is used in various studies as periodic and quantitative information acquisition means on the global scale, but optical sensor-based satellite AOD images are missing in some areas with cloud conditions. In this study, we produced gap-free GeoKompsat 2A (GK-2A) Advanced Meteorological Imager (AMI) AOD hourly images after generating a Random Forest based gap-filling model using grid meteorological and geographic elements as input variables. The accuracy of the model is Mean Bias Error (MBE) of -0.002 and Root Mean Square Error (RMSE) of 0.145, which is higher than the target accuracy of the original data and considering that the target object is an atmospheric variable with Correlation Coefficient (CC) of 0.714, it is a model with sufficient explanatory power. The high temporal resolution of geostationary satellites is suitable for diurnal variation observation and is an important model for other research such as input for atmospheric correction, estimation of ground PM, analysis of small fires or pollutants.

Monitoring Wheat Growth by COSMO-SkyMed SAR Images (COSMO-SkyMed SAR 영상을 이용한 밀 생육 모니터링)

  • Kim, Yihyun;Hong, Sukyoung;Lee, Kyungdo;Jang, Soyeong;Lee, Hoonyol;Oh, Yisok
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.35-43
    • /
    • 2013
  • We analyzed the relationships between backscattering coefficients of wheat measured by COSMO-SkyMed SAR and biophysical measurements such as biomass, vegetation water content, and soil moisture over an entire wheat growth period. Backscattering coefficients increased until DOY 129 and then decreased along with fresh weight, dry weight, and vegetation water content. Correlation analysis between backscattering and wheat growth parameters revealed that backscatter correlated well with fresh weight (r=0.88), vegetation water content (r=0.87), and dry weight (r=0.80), while backscatter did not correlated with soil moisture (r=0.18). Prediction equations for estimation of wheat growth parameters from the backscattering coefficients were developed.

Operational Ship Monitoring Based on Multi-platforms (Satellite, UAV, HF Radar, AIS) (다중 플랫폼(위성, 무인기, AIS, HF 레이더)에 기반한 시나리오별 선박탐지 모니터링)

  • Kim, Sang-Wan;Kim, Donghan;Lee, Yoon-Kyung;Lee, Impyeong;Lee, Sangho;Kim, Junghoon;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.379-399
    • /
    • 2020
  • The detection of illegal ship is one of the key factors in building a marine surveillance system. Effective marine surveillance requires the means for continuous monitoring over a wide area. In this study, the possibility of ship detection monitoring based on satellite SAR, HF radar, UAV and AIS integration was investigated. Considering the characteristics of time and spatial resolution for each platform, the ship monitoring scenario consisted of a regular surveillance system using HFR data and AIS data, and an event monitoring system using satellites and UAVs. The regular surveillance system still has limitations in detecting a small ship and accuracy due to the low spatial resolution of HF radar data. However, the event monitoring system using satellite SAR data effectively detects illegal ships using AIS data, and the ship speed and heading direction estimated from SAR images or ship tracking information using HF radar data can be used as the main information for the transition to UAV monitoring. For the validation of monitoring scenario, a comprehensive field experiment was conducted from June 25 to June 26, 2019, at the west side of Hongwon Port in Seocheon. KOMPSAT-5 SAR images, UAV data, HF radar data and AIS data were successfully collected and analyzed by applying each developed algorithm. The developed system will be the basis for the regular and event ship monitoring scenarios as well as the visualization of data and analysis results collected from multiple platforms.

Precise Orbit Determination of LEO Satellite Using Dual-Frequency GPS Data (이중 주파수 GPS 데이터를 이용한 저궤도 위성의 정밀궤도결정)

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Jae-Hoon;Yoon, Jae-Cheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.229-236
    • /
    • 2009
  • KOorea Multi-purpose SATellite(KOMPSAT)-5 will be launched at 550km altitude in 2010. Accurate satellite position(20 cm) and velocity(0.03 cm/s) are required to treat highly precise Synthetic Aperture Radar(SAR) image processing. Ionosphere delay was eliminated using dual frequency GPS data and double differenced GPS measurement removed common clock errors of both GPS satellites and receiver. SAC-C carrier phase data with 0.1 Hz sampling rate was used to achieve precise orbit determination(POD) with ETRI GNSS Precise Orbit Determination(EGPOD) software, which was developed by ETRI. Dynamic model approach was used and satellite's position, velocity, and the coefficients of solar radiation pressure and drag were adjusted once per arc using Batch Least Square Estimator(BLSE) filter. Empirical accelerations for sinusoidal radial, along-track, and cross track terms were also estimated once per revolution for unmodeled dynamics. Additionally piece-wise constant acceleration for cross-track direction was estimated once per arc. The performance of POD was validated by comparing with JPL's Precise Orbit Ephemeris(POE).

Content Analysis-based Adaptive Filtering in The Compressed Satellite Images (위성영상에서의 적응적 압축잡음 제거 알고리즘)

  • Choi, Tae-Hyeon;Ji, Jeong-Min;Park, Joon-Hoon;Choi, Myung-Jin;Lee, Sang-Keun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.5
    • /
    • pp.84-95
    • /
    • 2011
  • In this paper, we present a deblocking algorithm that removes grid and staircase noises, which are called "blocking artifacts", occurred in the compressed satellite images. Particularly, the given satellite images are compressed with equal quantization coefficients in row according to region complexity, and more complicated regions are compressed more. However, this approach has a problem that relatively less complicated regions within the same row of complicated regions have blocking artifacts. Removing these artifacts with a general deblocking algorithm can blur complex and undesired regions as well. Additionally, the general filter lacks in preserving the curved edges. Therefore, the proposed algorithm presents an adaptive filtering scheme for removing blocking artifacts while preserving the image details including curved edges using the given quantization step size and content analysis. Particularly, WLFPCA (weighted lowpass filter using principle component analysis) is employed to reduce the artifacts around edges. Experimental results showed that the proposed method outperforms SA-DCT in terms of subjective image quality.

Simulation Approach for the Tracing the Marine Pollution Using Multi-Remote Sensing Data (다중 원격탐사 자료를 활용한 해양 오염 추적 모의 실험 방안에 대한 연구)

  • Kim, Keunyong;Kim, Euihyun;Choi, Jun Myoung;Shin, Jisun;Kim, Wonkook;Lee, Kwang-Jae;Son, Young Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.249-261
    • /
    • 2020
  • Coastal monitoring using multiple platforms/sensors is a very important tools for accurately understanding the changes in offshore marine environment and disaster with high temporal and spatial resolutions. However, integrated observation studies using multiple platforms and sensors are insufficient, and none of them have been evaluated for efficiency and limitation of convergence. In this study, we aimed to suggest an integrated observation method with multi-remote sensing platform and sensors, and to diagnose the utility and limitation. Integrated in situ surveys were conducted using Rhodamine WT fluorescent dye to simulate various marine disasters. In September 2019, the distribution and movement of RWT dye patches were detected using satellite (Kompsat-2/3/3A, Landsat-8 OLI, Sentinel-3 OLCI and GOCI), unmanned aircraft (Mavic 2 pro and Inspire 2), and manned aircraft platforms after injecting fluorescent dye into the waters of the South Sea-Yeosu Sea. The initial patch size of the RWT dye was 2,600 ㎡ and spread to 62,000 ㎡ about 138 minutes later. The RWT patches gradually moved southwestward from the point where they were first released,similar to the pattern of tidal current flowing southwest as the tides gradually decreased. Unmanned Aerial Vehicles (UAVs) image showed highest resolution in terms of spatial and time resolution, but the coverage area was the narrowest. In the case of satellite images, the coverage area was wide, but there were some limitations compared to other platforms in terms of operability due to the long cycle of revisiting. For Sentinel-3 OLCI and GOCI, the spectral resolution and signal-to-noise ratio (SNR) were the highest, but small fluorescent dye detection was limited in terms of spatial resolution. In the case of hyperspectral sensor mounted on manned aircraft, the spectral resolution was the highest, but this was also somewhat limited in terms of operability. From this simulation approach, multi-platform integrated observation was able to confirm that time,space and spectral resolution could be significantly improved. In the future, if this study results are linked to coastal numerical models, it will be possible to predict the transport and diffusion of contaminants, and it is expected that it can contribute to improving model accuracy by using them as input and verification data of the numerical models.

Characteristics of the Electro-Optical Camera(EOC) (다목적실용위성탑재 전자광학카메라(EOC)의 성능 특성)

  • Seunghoon Lee;Hyung-Sik Shim;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.213-222
    • /
    • 1998
  • Electro-Optical Camera(EOC) is the main payload of the KOrea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including a Digital Terrain Elevation Map(DTEM). This instalment which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510~730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response, the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the users of EOC data. The modulation transfer function of EOC was measured as greater than 16 % at Nyquist frequency over the entire field of view, which exceeds its requirement of larger than 10 %. The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.

The Contents of SatDSiG and Its Implications for Korea (독일 위성자료보안법의 내용 및 시사점)

  • JUNG, Yungjin
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.60-65
    • /
    • 2019
  • TerraSAR-X, launched in June 2007, and TanDEM-X, June 2010, are remote-sensing satellites with 1M resolution that are capable of observing the ground even during the nighttime and poor weather conditions. The two satellites had been developed under a public-private partnership between the German Aerospace Centre and Airbus in the interest of the commercial marketing for German satellite data. However, the data of high-grade earth remote-sensing system, such as those of the satellites, has been produced by a military satellite and thus used under limited circumstances in Germany. Therefore, a legislation to commercialize the German satellite data and to protect its national security is needed. For this, SatDSiG was enacted in December 2007. Thus this article will contain the main contents of SatDSiG and its implication for Korea, which stared to export data of Kompsat 3, 3A and 5 in 2018.

Development of a Program for Calculating Typhoon Wind Speed and Data Visualization Based on Satellite RGB Images for Secondary-School Textbooks (인공위성 RGB 영상 기반 중등학교 교과서 태풍 풍속 산출 및 데이터 시각화 프로그램 개발)

  • Chae-Young Lim;Kyung-Ae Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.173-191
    • /
    • 2024
  • Typhoons are significant meteorological phenomena that cause interactions among the ocean, atmosphere, and land within Earth's system. In particular, wind speed, a key characteristic of typhoons, is influenced by various factors such as central pressure, trajectory, and sea surface temperature. Therefore, a comprehensive understanding based on actual observational data is essential. In the 2015 revised secondary school textbooks, typhoon wind speed is presented through text and illustrations; hence, exploratory activities that promote a deeper understanding of wind speed are necessary. In this study, we developed a data visualization program with a graphical user interface (GUI) to facilitate the understanding of typhoon wind speeds with simple operations during the teaching-learning process. The program utilizes red-green-blue (RGB) image data of Typhoons Mawar, Guchol, and Bolaven -which occurred in 2023- from the Korean geostationary satellite GEO-KOMPSAT-2A (GK-2A) as the input data. The program is designed to calculate typhoon wind speeds by inputting cloud movement coordinates around the typhoon and visualizes the wind speed distribution by inputting parameters such as central pressure, storm radius, and maximum wind speed. The GUI-based program developed in this study can be applied to typhoons observed by GK-2A without errors and enables scientific exploration based on actual observations beyond the limitations of textbooks. This allows students and teachers to collect, process, analyze, and visualize real observational data without needing a paid program or professional coding knowledge. This approach is expected to foster digital literacy, an essential competency for the future.

Monitoring of Shoreline Change using Satellite Imagery and Aerial Photograph : For the Jukbyeon, Uljin (위성영상 및 항공사진을 이용한 해안선 변화 모니터링 : 울진군 죽변면 연안을 대상으로)

  • Eom, Jin-Ah;Choi, Jong-Kuk;Ryu, Joo-Hyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.571-580
    • /
    • 2010
  • Coastal shoreline movement due to erosion and deposition is a major concern for coastal zone management. Shoreline is changed by nature factor or development of coastal. Change of shoreline is threatening marine environment and destroying. Therefore, we need monitoring of shoreline change with time series analysis for coastal zone management. In this study, we analyzed the shoreline change using airphotograph, LiDAR and satellite imagery from 1971 to 2009 in Uljin, Gyeongbuk, Korea. As a result, shoreline near of the nuclear power plant show linear pattern in 1971 and 1980, however the pattern of shoreline is changed after 2000. As a result of long-term monitoring, shoreline pattern near of the nuclear power plant is changed by erosion toward sea. The pattern of shoreline near of KORDI until 2003 is changed due to deposition toward sea, but the new pattern toward land is developed by erosion from 2003 to 2009. The shoreline is changed by many factors. However, we will guess that change of shoreline within study area is due to construction of nuclear power plant. In the future work, we need sedimentary and physical studies.