• Title/Summary/Keyword: KOMPSAT 5호

Search Result 89, Processing Time 0.114 seconds

An Accuracy Analysis of the High Resolution Ortho Image by Generation Technique of Digital Elevation Model (수치고도모델 생성 기법에 따른 고해상도 정사영상 정확도 분석)

  • Lee, Kwang-Jae;Kim, Youn-Soo;Noh, Jin-Kwan
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.118-125
    • /
    • 2012
  • The purpose of this study is to analyze the ortho image quality change according to the generation technique of Digital Elevation Model(DEM) based on the digital map. First of all, two different types of DEM were generated using contour layer(Case1), contour layer and altitude layer(Case2) from the digital map on the scale of 1/5,000. After generating and evaluating two types of DEM, KOMPSAT-2 ortho images were generated by using them. In conclusion, Case2 DEM was more effective to use in the slope and switchback area, on the other hand, Case1 DEM was much better than Case2 DEM for preventing a topographic distortion in flat area.

Orbital Parameters Modeling of High Resolution Satellite Imagery for Mapping Applications (매핑을 위한 고해상 위성영상의 궤도요소 모델링)

  • 유환희;성재열;김동규;진경혁
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.4
    • /
    • pp.405-414
    • /
    • 2000
  • A new generation of commercial satellites like IKONOS, SPOT-5 and OrbView-3,4 will have improved features, especially an higher geometric resolution with a better dynamic radiometric range. In addition high precision orbital position and attitude data will be provided by the on-board GPS receivers, IMU(Inertial Measurement Units) and star trackers. This additional information allows for reducing the number of ground control points. Furthermore this information enables direct georeferencing of imagery without ground control points. In our work mathematical models for calculating the satellite orbital parameters of SPOT-3 and KOMPSAT-1 were developed and can be easily extended to process images from other high resolution imaging systems as they become available.

  • PDF

Implementation of Matrix Receiving Structure for Versatile Multi-Mission LEO Operations (저궤도 다중위성 운용을 위한 매트릭스 구조의 수신 채널 구현)

  • Park, Durk-Jong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.10
    • /
    • pp.1001-1007
    • /
    • 2013
  • In the case of multi-mission LEO(Low Earth Orbit) operations, depending on the orbit of each satellite, one ground site is supposed to be communicated with more than two satellites at the same time. On top of that, image data processing system is generally mission-specific and 1:1 backup configuration. For the reason, if ground site has smaller number of antenna than that of satellite, interface with image data processing system would be very complicated. In this paper, considering that two LEO satellites can be operating and image data recording unit in redundancy can be easily plug-in, the implementation of matrix receiving structure is described. This matrix receiving structure has been validated from KOMPSAT-2 and -3(KOrea Multi-Purpose SATellite-2 and -3) since KOMPSAT-3 was launched in May, 2012. This structure will be applied for the KOMPSAT-3A and -5 through its expandability.

Land Cover Classification of Multi-functional Administrative City for Hazard Mitigation Precaution (행정중심복합도시 재해경감대책을 위한 토지피복분류)

  • Han, Seung-Hee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.77-83
    • /
    • 2008
  • In this study, land cover classification and NDVI evaluation for hazard mitigation precaution are carried out in surrounding areas of Yeongi-gun, Chungcheongnam-do ($132\;km^2$) where a project for multi-functional administrative city is promoted by government. Image acquired from KOMPSAT 2, LANDSAT and ASTER is utilized and comparative evaluation on limitation in classification based on resolution was carried out. The area mainly consists of arable land including mountains, rice fields, ordinary fields, etc thus special attention was paid to the classification of rice fields and ordinary fields. For the classification of image acquired from KOMPSAT 2, segmentation technique for classification of high-resolution image was applied. To evaluate the accuracy of the classification, field investigation was conducted to examine the sample and it was compared with the land usage and classification of land category in land ledger of Korea. Acquired results were made into theme map in shape file format and it would be of great help in decision making of policy for the future-oriented development plan of multi-functional administrative city.

Generation of the KOMPSAT-2 Ortho Mosaic Imagery on the Korean Peninsula (아리랑위성 2호 한반도 정사모자이크영상 제작)

  • Lee, Kwang-Jae;Yyn, Hee-Cheon;Kim, Youn-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.103-114
    • /
    • 2013
  • In this study, we established the ortho mosaic imagery on the Korean Peninsula using KOMPSAT-2 images and conducted an accuracy assessment. Rational Polynomial Coefficient(RPC) modeling results were mostly less than 2 pixels except for mountainous regions which was difficult to select a Ground Control Point(GCP). Digital Elevation Model(DEM) which was made using the digital topographic map on the scale of 1:5,000 was used for generating an ortho image. In the case of inaccessible area, the Shuttle Radar Topography Mission(SRTM) DEM was used. Meanwhile, the ortho mosaic image of the Korean Peninsula was produced by each ortho image aggregation and color adjustment. An accuracy analysis for the mosaic image was conducted about a 1m color fusion image. In order to verify a geolocation accuracy, 813 check points which were acquired by field survey in South Korea were used. We found that the maximum error was not to exceed 5m(Root Mean Square Error : RMSE). On the other hand, in the case of inaccessible area, the extracted check points from a reference image were used for accuracy analysis. Approximately 69% of the image has a positional accuracy of less than 3m(RMSE). We found that the seam-line accuracy among neighboring image was very high through visual inspection. However, there were a discrepancy with 1 to 2 pixels at some mountainous regions.

The Method for Colorizing SAR Images of Kompsat-5 Using Cycle GAN with Multi-scale Discriminators (다양한 크기의 식별자를 적용한 Cycle GAN을 이용한 다목적실용위성 5호 SAR 영상 색상 구현 방법)

  • Ku, Wonhoe;Chun, Daewon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1415-1425
    • /
    • 2018
  • Kompsat-5 is the first Earth Observation Satellite which is equipped with an SAR in Korea. SAR images are generated by receiving signals reflected from an object by microwaves emitted from a SAR antenna. Because the wavelengths of microwaves are longer than the size of particles in the atmosphere, it can penetrate clouds and fog, and high-resolution images can be obtained without distinction between day and night. However, there is no color information in SAR images. To overcome these limitations of SAR images, colorization of SAR images using Cycle GAN, a deep learning model developed for domain translation, was conducted. Training of Cycle GAN is unstable due to the unsupervised learning based on unpaired dataset. Therefore, we proposed MS Cycle GAN applying multi-scale discriminator to solve the training instability of Cycle GAN and to improve the performance of colorization in this paper. To compare colorization performance of MS Cycle GAN and Cycle GAN, generated images by both models were compared qualitatively and quantitatively. Training Cycle GAN with multi-scale discriminator shows the losses of generators and discriminators are significantly reduced compared to the conventional Cycle GAN, and we identified that generated images by MS Cycle GAN are well-matched with the characteristics of regions such as leaves, rivers, and land.

위성 영상 레이다(SAR) 기술 동향

  • Gwak, Yeong-Gil
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.4-16
    • /
    • 2011
  • 영상 레이다(Synthetic Aperture Radar: SAR)는 기상조건이나 주야에 관계없이 전천후로 광범위한 지역의 영상을 고해상도로 얻을 수 있는 능동형 전자파 레이다 센서이다. 최근 세계적으로 위성 SAR는 2010년을 기점으로 최근 3~4년 사이에 유사이래 가장 많은 13개 이상의 저궤도 소형 SAR 위성들을 발사함에 따라 비로소 "저궤도 위성 SAR 전성기"로 진입하게 되었다. 우리나라에서도 아리랑위성 5호(KOMPSAT-5)에 SAR를 탑재하는 최초의 레이다 위성을 올해 2011년에 발사할 계획을 가지고 있으나 아직 발사가 지연되고 있다. 본 기고에서는 2011년 9월 27~30일 서울에서 개최된 국제 영상 레이다 학술 대회 APSAR 2011(Asia-Pacific Conference on Synthetic Aperture Radar)의 성공을 기념하여 마련된 SAR 기술 특집호에 최신 위성 SAR 개발 동향을 중심으로 기술 발전 추세와 전망에 대하여 소개한다.

Application of LiDAR Data & High-Resolution Satellite Image for Calculate Forest Biomass (산림바이오매스 산정을 위한 LiDAR 자료와 고해상도 위성영상 활용)

  • Lee, Hyun-Jik;Ru, Ji-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.1
    • /
    • pp.53-63
    • /
    • 2012
  • As a result of the economical loss caused by unusual climate changes resulting from emission of excessive green house gases such as carbon dioxide which is expected to account for 5~20% of the world GDP by 2100, researching technologies regarding the reduction of carbon dioxide emission is being favored worldwide as a part of the high value-added industry. As one of the Annex II countries of Kyoto Protocol of 1997 that should keep the average $CO_2$ emission rate of 5% by 2013, South Korea is also dedicated to the researches and industries of $CO_2$ emission reduction. In this study, Application of LiDAR data & KOMPSAT-2 satellite image for calculated forest Biomass. Raw LiDAR data's tree numbers and tree-high with field survey data resulted in 90% similarity of objects and an average of 0.3m difference in tree-high. Calculating the forest biomass through forest type information categorized as KOMPSAT-2 image and LiDAR data's tree-high data of tree enabled the estimation of $CO_2$ absorption and forest biomass of forest type, The similarity between the field survey average of 90% or higher were analyzed.

대전광역시 도시화 패턴 분석을 위한 원격탐사 자료 처리 및 다중시기 토지이용 현황도 제작

  • Kim, Youn-Soo;Lee, Kwang-Jae;Jeon, Gap-Ho
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.141-148
    • /
    • 2004
  • The importance of satellite data for numerous applications is stressed by the fact that many countries have given the development of space technologies very high priority. Among these, Korea has established a medium-term space development strategy to promote space development both on a scientific as well as commercial level. As part of this strategy, the first operational earth-observation, multi-purpose satellite(KOMPSAT-1) was launched successfully in December, 1999. The Electro-Optical Camera (EOC) on board of KOMPSAT-1 supplies panchromatic images with a spatial resolution of 6.6m Until April, 2004, it collected over 150.000 images of the Korean Peninsula and the rest of the world. This paper examines the use of remote sensing data to analyze urban growth in the city of Daejeon from 1960 to 2003. By using visual interpretation, land use maps are created.

  • PDF

Verification of Kompsat-5 Sigma Naught Equation (다목적실용위성 5호 후방산란계수 방정식 검증)

  • Yang, Dochul;Jeong, Horyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1457-1468
    • /
    • 2018
  • The sigma naught (${\sigma}^0$) equation is essential to calculate geo-physical properties from Synthetic Aperture Radar (SAR) images for the applications such as ground target identification,surface classification, sea wind speed calculation, and soil moisture estimation. In this paper, we are suggesting new Kompsat-5 (K5) Radar Cross Section (RCS) and ${\sigma}^0$ equations reflecting the final SAR processor update and absolute radiometric calibration in order to increase the application of K5 SAR images. Firstly, we analyzed the accuracy of the K5 RCS equation by using trihedral corner reflectors installed in the Kompsat calibration site in Mongolia. The average difference between the calculated values using RCS equation and the measured values with K5 SAR processor was about $0.2dBm^2$ for Spotlight and Stripmap imaging modes. In addition, the verification of the K5 ${\sigma}^0$ equation was carried out using the TerraSAR-X (TSX) and Sentinel-1A (S-1A) SAR images over Amazon rainforest, where the backscattering characteristics are not significantly affected by the seasonal change. The calculated ${\sigma}^0$ difference between K5 and TSX/S-1A was less than 0.6 dB. Considering the K5 absolute radiometric accuracy requirement, which is 2.0 dB ($1{\sigma}$), the average difference of $0.2dBm^2$ for RCS equation and the maximum difference of 0.6 dB for ${\sigma}^0$ equation show that the accuracies of the suggested equations are relatively high. In the future, the validity of the suggested RCS and ${\sigma}^0$ equations is expected to be verified through the application such as sea wind speed calculation, where quantitative analysis is possible.