• Title/Summary/Keyword: KOH solution

Search Result 502, Processing Time 0.032 seconds

Determination of the Langmuir and Temkin Adsorption Isotherms of H for the Cathodic H2 Evolution Reaction at a Pt/KOH Solution Interface Using the Phase-Shift Method

  • Chun Jang-H.;Jeon Sang-K.;Chun Jin-Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.19-28
    • /
    • 2006
  • The phase-shift method for determining the Langmuir, Frumkin, and Temkin adsorption isotherms ($\theta_H\;vs.\;E$) of H for the cathodic $H_2$ evolution reaction (HER) at a Pt/0.1 M KOH solution interface has been proposed and verified using cyclic voltammetric, differential pulse voltammetric, and electrochemical impedance techniques. At the Pt/0.1 M KOH solution interface, the Langmuir and Temkin adsorption isotherms ($\theta_H\;vs.\;E$), the equilibrium constants ($K_H=2.9X10^{-4}mol^{-1}$ for the Langmuir and $K_H=2.9X10^{-3}\exp(-4.6\theta_H)mol^{-1}$ for the Temkin adsorption isotherm), the interaction parameters (g=0 far the Langmuir and g=4.6 for the Temkin adsorption isotherm), the rate of change of the standard free energy of $\theta_H\;with\;\theta_H$ (r=11.4 kJ $mol^{-1}$ for g=4.6), and the standard free energies (${\Delta}G_{ads}^{\circ}=20.2kJ\;mol^{-1}$ for $k_H=2.9\times10^{-4}mol^{-1}$, i.e., the Langmuir adsorption isotherm, and $16.7<{\Delta}G_\theta^{\circ}<23.6kJ\;mol^{-1}$ for $K_H=2.9\times10^{-3}\exp(-4.6\theta_H)mol^{-1}$ and $0.2<\theta_H<0.8$, i.e., the Temkin adsorption isotherm) of H for the cathodic HER are determined using the phase-shift method. At intermediate values of $\theta_H$, i.e., $0.2<\theta_H<0.8$, the Temkin adsorption isotherm ($\theta_H\;vs.\;E$) corresponding to the Langmuir adsorption isotherm ($\theta_H\;vs.\;E$), and vice versa, is readily determined using the constant conversion factors. The phase-shift method and constant conversion factors are useful and effective for determining the Langmuir, Frumkin, and Temkin adsorption isotherms of intermediates for sequential reactions and related electrode kinetic and thermodynamic data at electrode catalyst interfaces.

Ordered Macropores Prepared in p-Type Silicon (P-형 실리콘에 형성된 정렬된 매크로 공극)

  • Kim, Jae-Hyun;Kim, Gang-Phil;Ryu, Hong-Keun;Suh, Hong-Suk;Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.241-241
    • /
    • 2008
  • Macrofore formation in silicon and other semiconductors using electrochemical etching processes has been, in the last years, a subject of great attention of both theory and practice. Its first reason of concern is new areas of macropore silicone applications arising from microelectromechanical systems processing (MEMS), membrane techniques, solar cells, sensors, photonic crystals, and new technologies like a silicon-on-nothing (SON) technology. Its formation mechanism with a rich variety of controllable microstructures and their many potential applications have been studied extensively recently. Porous silicon is formed by anodic etching of crystalline silicon in hydrofluoric acid. During the etching process holes are required to enable the dissolution of the silicon anode. For p-type silicon, holes are the majority charge carriers, therefore porous silicon can be formed under the action of a positive bias on the silicon anode. For n-type silicon, holes to dissolve silicon is supplied by illuminating n-type silicon with above-band-gap light which allows sufficient generation of holes. To make a desired three-dimensional nano- or micro-structures, pre-structuring the masked surface in KOH solution to form a periodic array of etch pits before electrochemical etching. Due to enhanced electric field, the holes are efficiently collected at the pore tips for etching. The depletion of holes in the space charge region prevents silicon dissolution at the sidewalls, enabling anisotropic etching for the trenches. This is correct theoretical explanation for n-type Si etching. However, there are a few experimental repors in p-type silicon, while a number of theoretical models have been worked out to explain experimental dependence observed. To perform ordered macrofore formaion for p-type silicon, various kinds of mask patterns to make initial KOH etch pits were used. In order to understand the roles played by the kinds of etching solution in the formation of pillar arrays, we have undertaken a systematic study of the solvent effects in mixtures of HF, N-dimethylformamide (DMF), iso-propanol, and mixtures of HF with water on the macrofore structure formation on monocrystalline p-type silicon with a resistivity varying between 10 ~ 0.01 $\Omega$ cm. The etching solution including the iso-propanol produced a best three dimensional pillar structures. The experimental results are discussed on the base of Lehmann's comprehensive model based on SCR width.

  • PDF

Effect of $H_2S$ Partial Pressure and pH of Test Solution on Hydrogen Induced Cracking of High Strength Low Alloy Steels

  • Kim, Wan Keun;Koh, Seong Ung;Kim, Kyoo Young;Yang, Boo Young;Jung, Hwan Kyo
    • Corrosion Science and Technology
    • /
    • v.4 no.6
    • /
    • pp.236-241
    • /
    • 2005
  • Hydrogen induced cracking (HIC) is one of the hydrogen degradation phenomena of linepipe steels caused by $H_2S$ gas in the crude oil or natural gas. However, NACE TM0284-96 standard HIC test method is hard to satisfy the steel requirements for sour service application since it uses more severe environmental conditions than actual conditions. Therefore, in order to use steels effectively, it is required to evaluate HIC resistance of steels in the practical range of environmental severity. In this study, HIC resistance of two high strength low alloy (HSLA) steels being used as line pipe steels was evaluated in various test solutions with different $H_2S$ pressures and pH values. The results showed that the key parameter affecting crack area ratio (CAR) is $H_2S$ partial pressure of test solution when the pH value of test solution is not over 4. Hydrogen diffusivity was not a constant value, but it was rather affected by the hydrogen ion concentration (pH value) in the solution.

Lymphatic Delivery of Oral Anticancer Tegafur by Emulsion Formulations

  • Lee, Yong-Bok;Koh, Ik-Bae
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.19-30
    • /
    • 1993
  • The influence of emulsion type of tegafur, an oral anticancer agent, on lymphatic transport was studied in rats. The water-in-oil-type of emulsion and the oil-in-water-type emulsion of tegafur each in 50 mg, calculated in terms of tegafur, were prepared by adding tegafur aqueous solution to sesame oil containing hydrogenated castor oil following ultrasonic treatment, and then the prepared emulsions and aqueous solution as a comparative formulation were administered orally to rats (50 mg/5 ml/kg). The concentration levels of tegafur in plasma of femoral artery and lymph from thoracic duct cannula were measured simultaneously along a time course after administration and the pharmacokinetic parameters were investigated. At the same time, we examined the above described factors of 5-FU which is known as an active metabolite of tegafur. In comparison with tegafur solution, AUC and mean residence time of plasma tegafur were significantly increased in w/o-emulsion but significantly decreased in o/w-emulsion. Lymph flow rates were similar in both solution and w/o-emulsion but half in o/w-emulsion. Ratios between area under the lymph and plasma concentration time curves were always less than 1 reflecting the passive lymphatic delivery after oral administration of the prepared tegafur emulsions, but those to the 5-FU in the case of w/o-emulsion were more than 1. These results suggested that lymphatic delivery of tegafur by w/o-emulsion was more effective than that by o/w-emulsion due to its differences of formation ability of chylomicrons.

  • PDF

Ni Electroplating in the Emulsions of Supercritical $CO_2$ Formed by Ultrasonar (초음파를 이용한 초임계 이산화탄소 에멀젼내 Ni 전해도금)

  • Koh M. S.;Joo M. S.;Park K. H.;Kim H. D.;Kim H. W.;Han S. H.;Sato Nobuaki
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.6
    • /
    • pp.344-349
    • /
    • 2004
  • Emulsions were formed through putting small quantity of nickel electroplating solution into supercritical carbon dioxide, and then electroplating in the $sc-CO_2$ emulsions was conducted. It is an environmental-friendly technology that can solve the treatment of a large quantity of toxic plating wastewater, which is a big problem in the existing wet plating, and also can reduce secondary waste generation fundamentally. Supercritical carbon dioxide emulsions enhanced by ultrasonic horn were formed by non-ionic surfactant and nickel solution. Plating condition within emulsions was set up as 120bar and $55^{\circ}C$ through measurement of electrical conductivity following the pressure change. Experiments were conducted respectively against supercritical carbon dioxide emulsions electroplating and general chemical electroplating, and then their results were compared and analyzed. As the experiment result utilizing emulsions, plating surface was formed very evenly even with a small quantity of electroplating solution, and fine particles were plated compactly without any pinhole or crack due to hydrogenation, which occurs in general electroplating. Used electroplating solution can be reused through recovery process. Therefore, this technology will be able to be applied as new clean technology in electro-plating.

A FIXED POINT APPROACH TO THE STABILITY OF QUARTIC LIE ∗-DERIVATIONS

  • Kang, Dongseung;Koh, Heejeong
    • Korean Journal of Mathematics
    • /
    • v.24 no.4
    • /
    • pp.587-600
    • /
    • 2016
  • We obtain the general solution of the functional equation $f(ax+y)-f(x-ay)+{\frac{1}{2}}a(a^2+1)f(x-y)+(a^4-1)f(y)={\frac{1}{2}}a(a^2+1)f(x+y)+(a^4-1)f(x)$ and prove the stability problem of the quartic Lie ${\ast}$-derivation by using a directed method and an alternative fixed point method.

The electrochemical desorption of an eicosanethiol monolayer by electrochemical quartz crystal microbalance (EQCM을 이용한 아이코산티올 단분자막의 전기화학적 탈착)

  • Chung, Chinkap
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.383-389
    • /
    • 1995
  • A new approach for the measurement of the surface coverages of monomolecular films fabricated by spontaneous adsorption of thiol compounds on gold is described. It is based on the mass change measurement with EQCM for the reductive electrochemical desorption of thiol in aqueous KOH solution. The results were compared with that of charge calculation during electrochemical desorption. The surface coverage value for eicosanethiol agrees with that obtained by charge calculation of electrochemical reduction as well as that expected from a geometrical model of the compact monolayer.

  • PDF