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APPROXIMATE QUARTIC LIE ∗-DERIVATIONS

Heejeong Koh

Abstract. We will show the general solution of the functional equation f(x +
ay) + f(x − ay) + 2(a2 − 1)f(x) = a2f(x + y) + a2f(x − y) + 2a2(a2 − 1)f(y)
and investigate the stability of quartic Lie ∗-derivations associated with the given
functional equation.

1. Introduction

The stability problem of functional equations originated from a question of Ulam [17]
concerning the stability of group homomorphisms. Hyers [7] gave a first affirmative
partial answer to the question of Ulam. Afterwards, the result of Hyers was gener-
alized by Aoki [1] for additive mapping and by Rassias [14] for linear mappings by
considering a unbounded Cauchy difference. Later, the result of Rassias has pro-
vided a lot of influence in the development of what we call Hyers-Ulam stability or
Hyers-Ulam-Rassias stability of functional equations. For further information about
the topic, we also refer the reader to [10], [8], [2] and [3].

Recall that a Banach ∗-algebra is a Banach algebra (complete normed algebra)
which has an isometric involution. Jang and Park [9] investigated the stability of ∗-
derivations and of quadratic ∗-derivations with Cauchy functional equation and the
Jensen functional equation on Banach ∗-algebra. The stability of ∗-derivations on
Banach ∗-algebra by using fixed point alternative was proved by Park and Bodaghi
and also Yang et al.; see [12] and [19], respectively. Also, the stability of cubic Lie
derivations was introduced by Fošner and Fošner; see [6].

Rassias [13] investigated stability properties of the following quartic functional
equation

(1.1) f(x + 2y) + f(x− 2y) + 6f(x) = 4f(x + y) + 4f(x− y) + 24f(y) .

Received by the editors October 15, 2015. Accepted October 23, 2015.
2010 Mathematics Subject Classification. 39B55, 39B72, 47B47, 47H10.
Key words and phrases. Hyers-Ulam-Rassias stability, quartic mapping, Lie ∗-derivation, Banach

∗-algebra, fixed point alternative.

c© 2015 Korean Soc. Math. Educ.

389



390 Heejeong Koh

It is easy to see that f(x) = x4 is a solution of (1.1) by virtue of the identity

(1.2) (x + 2y)4 + (x− 2y)4 + x4 = 4(x + y)4 + 4(x− y)4 + 24y4 .

For this reason, (1.1) is called a quartic functional equation. Also Chung and Sa-
hoo [4] determined the general solution of (1.1) without assuming any regularity con-
ditions on the unknown function. In fact, they proved that the function f : R→ R is
a solution of (1.1) if and only if f(x) = A(x, x, x, x) , where the function A : R4 → R
is symmetric and additive in each variable.

In this paper, we deal with the following functional equation:

(1.3) f(x + ay) + f(x− ay) + 2(a2 − 1)f(x)

= a2f(x + y) + a2f(x− y) + 2a2(a2 − 1)f(y)

for all x , y ∈ X and an integer a(a 6= 0 ,±1) . We will show the general solution of the
functional equation (1.3), define a quartic Lie ∗-derivation related to equation (1.3)
and investigate the Hyers-Ulam stability of the quartic Lie ∗-derivations associated
with the given functional equation.

2. A Quartic Functional Equation

In this section let X and Y be real vector spaces and we investigate the general
solution of the functional equation (1.3). Before we proceed, we would like to in-
troduce some basic definitions concerning n-additive symmetric mappings and key
concepts which are found in [16] and [18]. A function A : X → Y is said to be
additive if A(x + y) = A(x) + A(y) for all x , y ∈ X . Let n be a positive integer. A
function An : Xn → Y is called n-additive if it is additive in each of its variables.
A function An is said to be symmetric if An(x1 , · · · , xn) = An(xσ(1) , · · · , xσ(n)) for
every permutation {σ(1) , · · · , σ(n)} of {1 , 2 , · · · , n} . If An(x1 , x2 , · · · , xn) is an n-
additive symmetric map, then An(x) will denote the diagonal An(x , x , · · · , x) and
An(rx) = rnAn(x) for all x ∈ X and all r ∈ Q . such a function An(x) will be called
a monomial function of degree n (assuming An 6≡ 0). Furthermore the resulting
function after substitution x1 = x2 = · · · = xs = x and xs+1 = xs+2 = · · · = xn = y

in An(x1 , x2 , · · · , xn) will be denoted by As,n−s(x , y) .

Theorem 2.1. A function f : X → Y is a solution of the functional equation (1.3)
if and only if f is of the form f(x) = A4(x) for all x ∈ X , where A4(x) is the
diagonal of the 4-additive symmetric mapping A4 : X4 → Y .
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Proof. Assume that f satisfies the functional equation (1.3). Letting x = y = 0 in
the equation (1.3), we have

f(0) = 2a2(a2 − 1)f(0) ,

that is, f(0) = 0 . Putting x = 0 in the equation (1.3), we get

(2.1) f(ax) + f(−ay) = a2f(y) + a2f(−y) + 2a2(a2 − 1)f(y)

for all y ∈ X . Replacing y by −y in the equation (2.1),we obtain

(2.2) f(ax) + f(−ay) = a2f(y) + a2f(−y) + 2a2(a2 − 1)f(−y)

for all y ∈ X . Combining two equations (2.1) and (2.2), we have f(y) = f(−y) , for
all y ∈ X . That is, f is even. We can rewrite the functional equation (1.3) in the
form

f(x) +
1

2(a2 − 1)
f(x + ay) +

1
2(a2 − 1)

f(x− ay)

− a2

2(a2 − 1)
f(x + y)− a2

2(a2 − 1)
f(x− y)− a2f(y) = 0

for all x , y ∈ X and an integer a(a 6= 0 ,±1) . By Theorem 3.5 and 3.6 in [18], f is
a generalized polynomial function of degree at most 4, that is, f is of the form

(2.3) f(x) = A4(x) + A3(x) + A2(x) + A1(x) + A0(x)

for all x ∈ X , where A0(x) = A0 is an arbitrary element of Y , and Ai(x) is the
diagonal of the i-additive symmetric mapping Ai : Xi → Y for i = 1, 2, 3, 4 . By
f(0) = 0 and f(−x) = f(x) for all x ∈ X , we get A0(x) = A0 = 0 . Substituting
(2.3) into the equation (1.3) we have

A4(x + ay) + A3(x + ay) + A2(x + ay) + A1(x + ay)

+A4(x− ay) + A3(x− ay) + A2(x− ay) + A1(x− ay)

+2(a2 − 1)[A4(x) + A3(x) + A2(x) + A1(x)]

= a2[A4(x + y) + A3(x + y) + A2(x + y) + A1(x + y)

+A4(x− y) + A3(x− y) + A2(x− y) + A1(x− y)]

+2a2(a2 − 1)[A4(y) + A3(y) + A2(y) + A1(y)]
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for all x, y ∈ X . Note that

A4(x + ry) + A4(x− ry) = 2A4(x) + 12r2A2,2(x, y) + 2r4A4(y) ,

A3(x + ry) + A3(x− ry) = 2A3(x) + 6r2A1,2(x, y) ,

A2(x + ry) + A2(x− ry) = 2A2(x) + 2r2A2(y) ,

A1(x + ry) + A1(x− ry) = 2A1(x) .

Since a 6= 0,±1 , we have

(2.4) A3(y) + A2(y) + A1(y) = 0

for all y ∈ X . Thus

f(x) = A4(x) + A3(x) + A2(x) + A1(x) + A0(x) = A4(x)

for all x ∈ X .

Conversely, assume that f(x) = A4(x) for all x ∈ X , where A4(x) is the diagonal
of a 4-additive symmetric mapping A4 : X4 → Y . Note that

A4(qx + ry)

= q4A4(x) + 4q3rA3,1(x, y) + 6q2r2A2,2(x, y) + 4qr3A1,3(x, y) + r4A4(y)

csAs,t(x, y) = As,t(cx, y) , ctAs,t(x, y) = As,t(x, cy)

where 1 ≤ s, t ≤ 3 and c ∈ Q . Thus we may conclude that f satisfies the equation
(1.3). ¤

3. Quartic Lie ∗-derivations

Throughout this section, we assume that A is a complex normed ∗-algebra and
M is a Banach A-bimodule. We will use the same symbol || · || as norms on a
normed algebra A and a normed A-bimodule M . A mapping f : A → M is a
quartic homogeneous mapping if f(µa) = µ4f(a) , for all a ∈ A and µ ∈ C . A
quartic homogeneous mapping f : A → M is called a quartic derivation if

f(xy) = f(x)y4 + x4f(y)

holds for all x , y ∈ A . For all x , y ∈ A , the symbol [x, y] will denote the commutator
xy − yx . We say that a quartic homogeneous mapping f : A → M is a quartic Lie
derivation if

f([x, y]) = [f(x), y4] + [x4, f(y)]
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for all x, y ∈ A . In addition, if f satisfies in condition f(x∗) = f(x)∗ for all x ∈ A ,

then it is called the quartic Lie ∗-derivation.

Example 3.1. Let A = C be a complex field endowed with the map z 7→ z∗ = z̄

(where z̄ is the complex conjugate of z). We define f : A → A by f(a) = a4 for all
a ∈ A . Then f is quartic and

f([a, b]) = [f(a), b4] + [a4, f(b)] = 0

for all a ∈ A . Also,

f(a∗) = f(ā) = ā4 = f(a) = f(a)∗

for all a ∈ A . Thus f is a quartic Lie ∗-derivation.

In the following, T1 will stand for the set of all complex units, that is,

T1 = {µ ∈ C | |µ| = 1} .

For the given mapping f : A → M , we consider

(3.1) ∆µf(x, y) := f(µx + sµy) + f(µx− sµy)− s2µ4f(x + y)− s2µ4f(x− y)

+2µ4(s2 − 1)f(x)− 2µ4s2(s2 − 1)f(y) ,

∆f(x, y) := f([x, y])− [f(x), y4]− [x4, f(y)]

for all x, y ∈ A , µ ∈ C and s ∈ Z (s 6= 0 ,±1) .

Theorem 3.2. Suppose that f : A → M is an even mapping with f(0) = 0 for
which there exists a function φ : A5 → [0, ∞) such that

(3.2) φ̃(a, b, x, y, z) :=
∞∑

j=0

1
|s|4j

φ(sja, sjb, sjx, sjy, sjz) < ∞

(3.3) ||∆µf(a, b)|| ≤ φ(a, b, 0, 0, 0)

(3.4) ||∆f(x, y) + f(z∗)− f(z)∗|| ≤ φ(0, 0, x, y, z)

for all µ ∈ T1
1

n0

= {eiθ | 0 ≤ θ ≤ 2π
n0
} and all a, b, x, y, z ∈ A in which n0 ∈ N . Also,

if for each fixed b ∈ A the mapping r 7→ f(rb) from R to M is continuous, then
there exists a unique quartic Lie ∗-derivation L : A → M satisfying

(3.5) ||f(b)− L(b)|| ≤ 1
2|s|4 φ̃(0, b, 0, 0, 0) .
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Proof. Let a = 0 and µ = 1 in the inequality (3.3), we have

(3.6) ||f(b)− 1
s4

f(sb)|| ≤ 1
2|s|4 φ(0, b, 0, 0, 0)

for all b ∈ A . Using the induction, it is easy to show that

(3.7) || 1
s4t

f(stb)− 1
s4k

f(skb)|| ≤ 1
2|s|4

t−1∑

j=k

φ(0, sjb, 0, 0, 0)
|s|4j

for t > k ≥ 0 and b ∈ A . The inequalities (3.2) and (3.7) imply that the sequence
{ 1

s4n f(snb)}∞n=0 is a Cauchy sequence. Since M is complete, the sequence is conver-
gent. Hence we can define a mapping L : A → M as

(3.8) L(b) = lim
n→∞

1
s4n

f(snb)

for b ∈ A . By letting t = n and k = 0 in the inequality (3.7), we have

(3.9) || 1
s4n

f(snb)− f(b)|| ≤ 1
2|s|4

n−1∑

j=0

φ(0, sjb, 0, 0, 0)
|s|4j

for n > 0 and b ∈ A . By taking n →∞ in the inequality (3.9), the inequalities (3.2)
implies that the inequality (3.5) holds.

Now, we will show that the mapping L is a unique quartic Lie ∗-derivation such
that the inequality (3.5) holds for all b ∈ A . We note that

(3.10) ||∆µL(a, b)|| = lim
n→∞

1
|s|4n

||∆µf(sna, snb)||

≤ lim
n→∞

φ(sna, snb, 0, 0, 0)
|s|4n

= 0 ,

for all a, b ∈ A and µ ∈ T1
1

n0

. By taking µ = 1 in the inequality (3.10), it follows

that the mapping L is a quartic mapping. Also, the inequality (3.10) implies that
∆µL(0, b) = 0 . Hence

L(µb) = µ4L(b)

for all b ∈ A and µ ∈ T1
1

n0

. Let µ ∈ T1 = {λ ∈ C | |λ| = 1} . Then µ = eiθ , where

0 ≤ θ ≤ 2π . Let µ1 = µ
1

n0 = e
iθ
n0 . Hence we have µ1 ∈ T1

1
n0

. Then

L(µb) = L(µn0
1 b) = µ4n0

1 L(b) = µ4L(b)

for all µ ∈ T1 and a ∈ A . Suppose that ρ is any continuous linear functional on A

and b is a fixed element in A . Then we can define a function g : R→ R by

g(r) = ρ(L(rb))
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for all r ∈ R . It is easy to check that g is cubic. Let

gk(r) = ρ
(f(skrb)

s4k

)

for all k ∈ N and r ∈ R .

Note that g as the pointwise limit of the sequence of measurable functions gk is
measurable. Hence g as a measurable quartic function is continuous (see [5]) and

g(r) = r4g(1)

for all r ∈ R . Thus

ρ(L(rb)) = g(r) = r4g(1) = r4ρ(L(b)) = ρ(r4L(b))

for all r ∈ R . Since ρ was an arbitrary continuous linear functional on A we may
conclude that

L(rb) = r4L(b)

for all r ∈ R . Let µ ∈ C (µ 6= 0) . Then µ
|µ| ∈ T1 . Hence

L(µa) = L
( µ

|µ| |µ|b
)

=
( µ

|µ|
)4

L(|µ|b) =
( µ

|µ|
)4
|µ|4L(b) = µ4L(b)

for all b ∈ A and µ ∈ C (µ 6= 0) . Since b was an arbitrary element in A , we may
conclude that L is quartic homogeneous.

Next, replacing x, y by skx, sky , respectively, and z = 0 in the inequality (3.4),
we have

||∆L(x, y)|| = lim
n→∞ ||

∆f(snx, sny)
s4n

||

≤ lim
n→∞

1
|s|4n

φ(0, 0, snx, sny, 0) = 0

for all x, y ∈ A . Hence we have ∆L(x, y) = 0 for all x, y ∈ A . That is, L is a quartic
Lie derivation. Letting x = y = 0 and replacing z by skz in the inequality (3.4), we
get

(3.11)
∣∣∣
∣∣∣f(snz∗)

s4n
− f(snz)∗

s4n

∣∣∣
∣∣∣ ≤ φ(0, 0, 0, 0, snz)

|s|4n

for all z ∈ A . As n →∞ in the inequality (3.11), we have

L(z∗) = L(z)∗
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for all z ∈ A . This means that L is a quartic Lie ∗-derivation. Now, assume L′ :
A → A is another quartic ∗-derivation satisfying the inequality (3.5). Then

||L(b)− L′(b)|| =
1

|s|4n
||L(snb)− L′(snb)||

≤ 1
|s|4n

(
||L(snb)− f(snb)||+ ||f(snb)− L′(snb)||

)

≤ 1
|s|4n+1

∞∑

j=0

1
|s|4j

φ(0, sj+nb, 0, 0, 0)

=
1
|s|4

∞∑

j=n

1
|s|4j

φ(0, sjb, 0, 0, 0) ,

which tends to zero as k →∞ , for all b ∈ A . Thus L(b) = L′(b) for all b ∈ A . This
proves the uniqueness of L . ¤

Corollary 3.3. Let θ , r be positive real numbers with r < 4 and let f : A → M be
an even mapping with f(0) = 0 such that

||∆µf(a, b)|| ≤ θ(||a||r + ||b||r)
||∆f(x, y) + f(z∗)− f(z)∗|| ≤ θ(||x||r + ||y||r + ||z||r)

for all µ ∈ T1
1

n0

and a, b, x, y, z ∈ A . Then there exists a unique quartic Lie ∗-
derivation L : A → M satisfying

||f(b)− L(b)|| ≤ θ||b||r
2(|s|4 − |s|r)

for all b ∈ A .

Proof. The proof follows from Theorem 3.2 by taking φ(a, b, x, y, z) = θ(||a||r +
||b||r + ||x||r + ||y||r + ||z||r) for all a, b, x, y, z ∈ A . ¤

In the following corollaries, we show the hyperstability for the quartic Lie ∗-
derivations.

Corollary 3.4. Let r be positive real numbers with r < 4 and let f : A → M be an
even mapping with f(0) = 0 such that

||∆µf(a, b)|| ≤ ||a||r||b||r

||∆f(x, y) + f(z∗)− f(z)∗|| ≤ ||x||r||y||r||z||r

for all µ ∈ T1
1

n0

and a, b, x, y, z ∈ A . Then f is a quartic Lie ∗-derivation on A .
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Proof. By taking φ(a, b, x, y, z) = (||a||r + ||x||r)(||b||r + ||y||r||z||r) in Theorem 3.2
for all a, b, x, y, z ∈ A , we have φ̃(0, b, 0, 0, 0) = 0 . Hence the inequality (3.5) implies
that f = L , that is, f is a quartic Lie ∗-derivation on A . ¤

Corollary 3.5. Let r be positive real numbers with r < 4 and let f : A → M be an
even mapping with f(0) = 0 such that

||∆µf(a, b)|| ≤ ||a||r||b||r

||∆f(x, y) + f(z∗)− f(z)∗|| ≤ ||x||r(||y||r + ||z||r)
for all µ ∈ T1

1
n0

and a, b, x, y, z ∈ A . Then f is a quartic Lie ∗-derivation on A .

Proof. By taking φ(a, b, x, y, z) = (||a||r + ||x||r)(||b||r + ||y||r + ||z||r) in Theorem 3.2
for all a, b, x, y, z ∈ A , we have φ̃(0, b, 0, 0, 0) = 0 . Hence the inequality (3.5) implies
that f = L , that is, f is a quartic Lie ∗-derivation on A . ¤

Now, we will investigate the stability of the given functional equation (3.1) using
the alternative fixed point method. Before proceeding the proof, we will state the
theorem, the alternative of fixed point; see [11] and [15].

Definition 3.6. Let X be a set. A function d : X × X → [0, ∞] is called a
generalized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y ;
(2) d(x, y) = d(y, x) for all x, y ∈ X ;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Theorem 3.7 (The alternative of fixed point [11], [15] ). Suppose that we are given
a complete generalized metric space (Ω, d) and a strictly contractive mapping T :
Ω → Ω with Lipschitz constant l . Then for each given x ∈ Ω , either

d(Tnx, Tn+1x) = ∞ for all n ≥ 0 ,

or there exists a natural number n0 such that

(1) d(Tnx, Tn+1x) < ∞ for all n ≥ n0 ;
(2) The sequence (Tnx) is convergent to a fixed point y∗ of T ;
(3) y∗ is the unique fixed point of T in the set

4 = {y ∈ Ω|d(Tn0x, y) < ∞} ;

(4) d(y, y∗) ≤ 1
1−l d(y, Ty) for all y ∈ 4 .



398 Heejeong Koh

Theorem 3.8. Let f : A → M be a continuous even mapping with f(0) = 0 and let
φ : A5 → [0,∞) be a continuous mapping such that

(3.12) ||∆µf(a, b)|| ≤ φ(a, b, 0, 0, 0)

(3.13) ||∆f(x, y) + f(z∗)− f(z)∗|| ≤ φ(0, 0, x, y, z)

for all µ ∈ T1
1

n0

and a, b, x, y, z ∈ A . If there exists a constant l ∈ (0, 1) such that

(3.14) φ(sa, sb, sx, sy, sz) ≤ |s|4lφ(a, b, x, y, z)

for all a, b, x, y, z ∈ A , then there exists a quartic Lie ∗-derivation L : A → M

satisfying

(3.15) ||f(b)− L(b)|| ≤ 1
2|s|4(1− l)

φ(0, b, 0, 0, 0)

for all b ∈ A .

Proof. Consider the set

Ω = {g | g : A → A , g(0) = 0}
and introduce the generalized metric on Ω ,

d(g, h) = inf {c ∈ (0,∞) | ‖ g(b)− h(b) ‖≤ cφ(0, b, 0, 0, 0) , for all b ∈ A} .

It is easy to show that (Ω, d) is complete. Now we define a function T : Ω → Ω by

(3.16) T (g)(b) =
1
s4

g(sb)

for all b ∈ A . Note that for all g, h ∈ Ω , let c ∈ (0, ∞) be an arbitrary constant
with d(g, h) ≤ c . Then

(3.17) ||g(b)− h(b)|| ≤ cφ(0, b, 0, 0, 0)

for all b ∈ A . Letting b = sb in the inequality (3.17) and using (3.14) and (3.16), we
have

||T (g)(b)− T (h)(b)|| =
1
|s|4 ||g(sb)− h(sb)||

≤ 1
|s|4 c φ(0, sb, 0, 0, 0) ≤ c l φ(0, b, 0, 0, 0) ,

that is,

d(Tg, Th) ≤ c l .

Hence we have that

d(Tg, Th) ≤ l d(g, h) ,
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for all g, h ∈ Ω , that is, T is a strictly self-mapping of Ω with the Lipschitz constant
l . Letting µ = 1 , a = 0 in the inequality (3.12), we get

|| 1
s4

f(sb)− f(b)|| ≤ 1
2|s|4 φ(0, b, 0, 0, 0)

for all b ∈ A . This means that

d(Tf, f) ≤ 1
2|s|4 .

We can apply the alternative of fixed point and since limn→∞ d(Tnf, L) = 0 , there
exists a fixed point L of T in Ω such that

(3.18) L(b) = lim
n→∞

f(snb)
s4n

,

for all b ∈ A . Hence

d(f, L) ≤ 1
1− l

d(Tf, f) ≤ 1
2|s|4

1
1− l

.

This implies that the inequality (3.15) holds for all b ∈ A . Since l ∈ (0, 1) , the
inequality (3.14) shows that

(3.19) lim
n→∞

φ(sna, snb, snx, sny, snz)
|s|4n

= 0 .

Replacing a , b by sna , snb , respectively, in the inequality (3.12), we have
1

|s|4n
||∆µf(sna, snb)|| ≤ φ(sna, snb, 0, 0, 0)

|s|4n
.

Taking the limit as k tend to infinity, we have ∆µf(a, b) = 0 for all a , b ∈ A and all
µ ∈ T1

1
n0

. The remains are similar to the proof of Theorem 3.2. ¤

Corollary 3.9. Let θ , r be positive real numbers with r < 4 and let f : A → M be
a mapping with f(0) = 0 such that

||∆µf(a, b)|| ≤ θ(||a||r + ||b||r)
||∆f(x, y) + f(z∗)− f(z)∗|| ≤ θ(||x||r + ||y||r + ||z||r)

for all µ ∈ T1
1

n0

and a, b, x, y, z ∈ A . Then there exists a unique quartic Lie ∗-
derivation L : A → M satisfying

||f(b)− L(b)|| ≤ θ||b||r
2|s|4(1− l)

for all b ∈ A .

Proof. The proof follows from Theorem 3.8 by taking φ(a, b, x, y, z) = θ(||a||r +
||b||r + ||x||r + ||y||r + ||z||r) for all a, b, x, y, z ∈ A . ¤
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In the following corollaries, we show the hyperstability for the quartic Lie ∗-
derivations.

Corollary 3.10. Let r be positive real numbers with r < 4 and let f : A → M be
an even mapping with f(0) = 0 such that

||∆µf(a, b)|| ≤ ||a||r||b||r

||∆f(x, y) + f(z∗)− f(z)∗|| ≤ ||x||r||y||r||z||r

for all µ ∈ T1
1

n0

and a, b, x, y, z ∈ A . Then f is a quartic Lie ∗-derivation on A .

Proof. By taking φ(a, b, x, y, z) = (||a||r+||x||r)(||b||r+||y||r||z||r) in Theorem 3.8 for
all a, b, x, y, z ∈ A , we have φ̃(0, b, 0, 0, 0) = 0 . Hence the inequality (3.15) implies
that f = L , that is, f is a quartic Lie ∗-derivation on A . ¤

Corollary 3.11. Let r be positive real numbers with r < 4 and let f : A → M be
an even mapping with f(0) = 0 such that

||∆µf(a, b)|| ≤ ||a||r||b||r

||∆f(x, y) + f(z∗)− f(z)∗|| ≤ ||x||r(||y||r + ||z||r)
for all µ ∈ T1

1
n0

and a, b, x, y, z ∈ A . Then f is a quartic Lie ∗-derivation on A .

Proof. By taking φ(a, b, x, y, z) = (||a||r + ||x||r)(||b||r + ||y||r + ||z||r) in Theorem 3.8
for all a, b, x, y, z ∈ A , we have φ̃(0, b, 0, 0, 0) = 0 . Hence the inequality (3.15) implies
that f = L , that is, f is a quartic Lie ∗-derivation on A . ¤
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