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APPROXIMATE QUARTIC LIE *-DERIVATIONS

HEEJEONG KOH

ABSTRACT. We will show the general solution of the functional equation f(z +

ay) + f(z — ay) + 2(a® = 1)f(z) = a’f(z +y) +a’flz —y) + 2a°(a® - 1)f(y)
and investigate the stability of quartic Lie *-derivations associated with the given
functional equation.

1. INTRODUCTION

The stability problem of functional equations originated from a question of Ulam [17]
concerning the stability of group homomorphisms. Hyers [7] gave a first affirmative
partial answer to the question of Ulam. Afterwards, the result of Hyers was gener-
alized by Aoki [1] for additive mapping and by Rassias [14] for linear mappings by
considering a unbounded Cauchy difference. Later, the result of Rassias has pro-
vided a lot of influence in the development of what we call Hyers-Ulam stability or
Hyers-Ulam-Rassias stability of functional equations. For further information about
the topic, we also refer the reader to [10], [8], [2] and [3].

Recall that a Banach *-algebra is a Banach algebra (complete normed algebra)
which has an isometric involution. Jang and Park [9] investigated the stability of *-
derivations and of quadratic *-derivations with Cauchy functional equation and the
Jensen functional equation on Banach x-algebra. The stability of x-derivations on
Banach x-algebra by using fixed point alternative was proved by Park and Bodaghi
and also Yang et al.; see [12] and [19], respectively. Also, the stability of cubic Lie
derivations was introduced by Fosner and Fosner; see [6].

Rassias [13] investigated stability properties of the following quartic functional

equation

(1.1) flx+2y) + f(z—2y) +6f(z) =4f(z +y) +4f(x —y) + 24f(y) .
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4

It is easy to see that f(z) = 2* is a solution of (1.1) by virtue of the identity

(1.2) (x+ 2 + (x — 29t + 2t = 4(z + )t +4(x —y)* + 2490

For this reason, (1.1) is called a quartic functional equation. Also Chung and Sa-
hoo [4] determined the general solution of (1.1) without assuming any regularity con-
ditions on the unknown function. In fact, they proved that the function f : R — R is
a solution of (1.1) if and only if f(z) = A(x,z,,x), where the function 4 : R* — R
is symmetric and additive in each variable.

In this paper, we deal with the following functional equation:
(1.3) f(z +ay) + f(x — ay) +2(a® = 1) f(2)

= a*f(z+y)+a’f(z —y) +2a°(a® = 1) f(y)
for all z,y € X and an integer a(a # 0,+1) . We will show the general solution of the
functional equation (1.3), define a quartic Lie x-derivation related to equation (1.3)
and investigate the Hyers-Ulam stability of the quartic Lie x-derivations associated

with the given functional equation.

2. A QUARTIC FUNCTIONAL EQUATION

In this section let X and Y be real vector spaces and we investigate the general
solution of the functional equation (1.3). Before we proceed, we would like to in-
troduce some basic definitions concerning n-additive symmetric mappings and key
concepts which are found in [16] and [18]. A function A : X — Y is said to be
additive if A(x +vy) = A(z) + A(y) for all z,y € X . Let n be a positive integer. A

function 4,, : X™ — Y is called n-additive if it is additive in each of its variables.

A function A, is said to be symmetric if A, (z1, -+ ,7n) = An(To1), s To(n)) for
every permutation {o(1),---,0(n)} of {1,2,--- ,n}.If A, (z1,22, -+ ,x,) is an n-
additive symmetric map, then A™(z) will denote the diagonal A, (z,x,---,x) and

A™(rz) = r" A™(z) for all z € X and all r € Q. such a function A™(z) will be called
a monomial function of degree n (assuming A" # 0). Furthermore the resulting
function after substitution x1 =29 = =z, =x and T541 = Ts420 = =Ty, =y
in A, (21,29, -+ ,x,) will be denoted by A>" 5(z,y).

Theorem 2.1. A function f: X — Y is a solution of the functional equation (1.3)
if and only if f is of the form f(x) = A*(x) for all x € X, where A*(x) is the
diagonal of the 4-additive symmetric mapping Ay : X* =Y .
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Proof. Assume that f satisfies the functional equation (1.3). Letting z = y = 0 in

the equation (1.3), we have

£(0) = 2a*(a® — 1)£(0),

that is, f(0) = 0. Putting x = 0 in the equation (1.3), we get

(2.1) flaz) + f(—ay) = a®f(y) + a* f(—y) + 2a°(a® — 1) f(y)

for all y € X . Replacing y by —y in the equation (2.1),we obtain

(2.2) flax) + f(—ay) = a®f(y) + > f(—y) + 2a°(a® — 1) f(—y)

for all y € X . Combining two equations (2.1) and (2.2), we have f(y) = f(—y), for
all y € X . That is, f is even. We can rewrite the functional equation (1.3) in the

form

)f<rr+y)—

v e
2(a?2 -1 2(a? —1)

for all z,y € X and an integer a(a # 0,=+1). By Theorem 3.5 and 3.6 in [18], f is

a generalized polynomial function of degree at most 4, that is, f is of the form
(2.3) f(z) = AY(z) + A3(x) + A%(z) + Al(z) + A%(2)

for all z € X, where A%(x) = A® is an arbitrary element of Y, and A%(x) is the
diagonal of the i-additive symmetric mapping A4; : X* — Y for i = 1,2,3,4. By
f(0) =0 and f(—x) = f(x) for all z € X, we get A%(z) = A = 0. Substituting
(2.3) into the equation (1.3) we have

Atz +ay) + A3(z + ay) + A%(z + ay) + Al (z + ay)
+AYz — ay) + A3(z — ay) + A%(z — ay) + Al (z — ay)
+2(a? — 1)[AY(z) + A3(x) + A%(z) + Al ()]

= ANz +y) + A +y) + A +y) + Az +y)
+ ANz —y) + Az —y) + A%z —y) + Al(z —y)]
+2a%(a® — 1)[A*(y) + A%(y) + A%(y) + A (y)]
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for all z,y € X . Note that

Az +ry) + A

( ) + Al —ry) = 24%(2) + 1202 A% (2, y) + 2r' AN (y)
A3(x 4 ry) + A3(x — ry) = 243(2) + 6r2 AV (2, ),
A2 (x4 ry) + A% (2 — ry) = 24%(z) + 2r° A% (y)
AY(z +ry) + Az — ry) = 24% ().

Since a # 0, £1, we have
(2.4) A(y) + A%(y) + Al (y) = 0
for all y € X . Thus
fl@) = AMx) + A3 (2) + A%(z) + A (2) + A%(z) = A'(z)

forall z € X .
Conversely, assume that f(x) = A%(z) for all z € X , where A*(x) is the diagonal
of a 4-additive symmetric mapping A4 : X* — Y . Note that

A4(qx +ry)
= ¢* A () + 4¢P APz, y) + 6¢°r2 A% (3, y) + 4grP AV (z,y) + r1 A% (y)
A (z,y) = A% (cx,y), A (z,y) = A% (2, cy)

where 1 < s,t < 3 and ¢ € Q. Thus we may conclude that f satisfies the equation
(1.3). O

3. QUARTIC LIE #*-DERIVATIONS

Throughout this section, we assume that A is a complex normed *-algebra and
M is a Banach A-bimodule. We will use the same symbol || - || as norms on a
normed algebra A and a normed A-bimodule M. A mapping f : A — M is a
quartic homogeneous mapping if f(ua) = p*f(a), for all a € A and p € C. A

quartic homogeneous mapping f : A — M is called a quartic derivation if

flay) = f(a)y" +a" f(y)
holds for all z ,y € A. Forall z,y € A, the symbol [z, y] will denote the commutator

xy — yx . We say that a quartic homogeneous mapping f : A — M is a quartic Lie

derivation if

fllz, y)) = [f (=), y'] + [2*, f(y)]
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for all z, y € A. In addition, if f satisfies in condition f(z*) = f(x)* for all x € A,

then it is called the quartic Lie x-derivation.

Example 3.1. Let A = C be a complex field endowed with the map z — z* = Z
(where % is the complex conjugate of z). We define f : A — A by f(a) = a* for all
a € A. Then f is quartic and

f(la, 8]) = [f(a), b'] + [a*, f(B)] =0
for all a € A. Also,
fla*) = f(a) = a" = f(a) = f(a)*

for all a € A. Thus f is a quartic Lie *-derivation.

In the following, T' will stand for the set of all complex units, that is,

T!' = {ueCllul =1}.

For the given mapping f : A — M , we consider

(3.1)  Auf(x,y) == flpx + spy) + f(px — spy) — ' f(x +y) — s°p' fz —y)
+2pt(s* = 1) f(w) — 2u"s*(s* = 1) f(y)
Af(x,y) = f(lz, y]) = [f(2), '] = [z, f(y)]

forallz, ye A, peC and s€ Z(s #0,+1).

Theorem 3.2. Suppose that f : A — M is an even mapping with f(0) = 0 for
which there exists a function ¢ : A5 — [0, co) such that

(3.2) qg(a,b,m,y,z) = Jz:% ’814j¢(sja, sTb, 87z, 57y, 872) < o0
(33) ||A/lf(avb)” S ¢(a7b’07070)
(3.4) [Af(z,y) + f(z%) — f(2)"]] < ¢(0,0,2,y, 2)

forallpe T, ={e?0<0< 727’;} and all a,b,z,y,z € A in which ng € N. Also,
if for each ﬁxzd b € A the mapping r — f(rb) from R to M is continuous, then

there exists a unique quartic Lie x-derivation L : A — M satisfying

(3.5) 1£(6) — L) < 2;'4;(0, ,0,0,0).
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Proof. Let a = 0 and p = 1 in the inequality (3.3), we have

(36) 11(8) = S5 )] € 3770(0.5.0.0.0
for all b € A. Using the induction, it is easy to show that
1 1 ti #(0, s7b,0,0,0)
j=k

1
(3.7) 17/ (s'0) = (5" )] < IRE BE

for t > k > 0 and b € A. The inequalities (3.2) and (3.7) imply that the sequence
{84% f(s"b)}>2, is a Cauchy sequence. Since M is complete, the sequence is conver-

gent. Hence we can define a mapping L : A — M as

(3.8) L(b) = lim — f(s"D)

n—oo 34

for b€ A. By letting t = n and k = 0 in the inequality (3.7), we have
1 ”Zl (0, s7b,0,0,0)
7=0

(39) 56 = SO < g S 52

forn > 0and b € A. By taking n — oo in the inequality (3.9), the inequalities (3.2)
implies that the inequality (3.5) holds.
Now, we will show that the mapping L is a unique quartic Lie *-derivation such
that the inequality (3.5) holds for all b € A. We note that
1
(3.10) 1ALL(a,b)|| = lim ——||A, f(s"a, s"b)]|
n—

0 ’8’477‘

n n
< iy O(57,575,0,0,0)

— n=oo ’8’4”‘

=0,

for all a,b € A and p € TY, . By taking p = 1 in the inequality (3.10), it follows
that the mapping L is a qlzgrtic mapping. Also, the inequality (3.10) implies that
A,L(0,b) = 0. Hence
L(ub) = p* L(b)
forallb€ Aand p € TY . Let p € TV = {A € C||\| = 1}. Then p = €, where
nQ
0<60<27m.Let ug :,u,% :e%. Hence we have uq E']I‘i. Then
70

L(pb) = L(pi°b) = pii™ L(b) = u* L(b)

for all 4 € T' and @ € A. Suppose that p is any continuous linear functional on A

and b is a fixed element in A. Then we can define a function g : R — R by

9(r) = p(L(rd))
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for all » € R. It is easy to check that g is cubic. Let

ar) = (L)

forall ke Nand r € R.
Note that g as the pointwise limit of the sequence of measurable functions gy is

measurable. Hence g as a measurable quartic function is continuous (see [5]) and

g(r) =r"g(1)

for all r € R. Thus

p(L(rb)) = g(r) = rtg(1) = r*p(L(b)) = p(r*L(b))

for all » € R. Since p was an arbitrary continuous linear functional on A we may

conclude that
L(rb) = r*L(b)

foralerR.LethC(M#O).Then‘Z—‘ETl.Hence

L(pa) = L L) = (‘Z‘)%(mw) - (,Z,)M‘L(b) — L)

for all b € A and p € C(u # 0). Since b was an arbitrary element in A, we may
conclude that L is quartic homogeneous.

Next, replacing z,y by s*z, s"y, respectively, and z = 0 in the inequality (3.4),

we have
. Af(s"x, sy
ALyl = Jim (A0,
1
S lim Wgﬁ(o, 0, Snx, Sny,O) =0

for all z,y € A. Hence we have AL(x,y) = 0 for all z,y € A. That is, L is a quartic
Lie derivation. Letting z = y = 0 and replacing z by s*z in the inequality (3.4), we
get

Hf(SZZ*) _J(s"2)”
Sin

(3.11) =
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for all z € A. This means that L is a quartic Lie x-derivation. Now, assume L’ :
A — A is another quartic *-derivation satisfying the inequality (3.5). Then

I1Z(®) = L'l = @HL(S%)—L’(S”ID)H

= |8|14n(HL(s"b) — f(s"b)[| + || f(s™b) — L’(s"b)H)

1 X1
j+
‘S‘4n+1 Z |8’4j ¢(07 s’ nb,0,0,0)
7=0

IN

1 = 1
= N 5(0.57b,0.0.0
‘8‘4;‘8‘4J¢( 78 b b ) )7

which tends to zero as k — oo, for all b € A. Thus L(b) = L'(b) for all b € A. This

proves the uniqueness of L . ]

Corollary 3.3. Let 0 ,r be positive real numbers with r < 4 and let f: A — M be
an even mapping with f(0) = 0 such that

1AL (@, 0)[| < 6([[al" + [[b]]")
1Af (2, y) + F(27) = F)7I < OCl]]" + llyll" + [[=]]")

for all p € TY and a,b,z,y,2 € A. Then there exists a unique quartic Lie *-

no
derivation L : A — M satisfying

_ ollbl
170 = 2O < g o

forallbe A.

Proof. The proof follows from Theorem 3.2 by taking ¢(a,b,x,y,z) = 0(||a||” +
[I1" + [|2[|" + [ly[l" + [|2]") for all a,b,z,y,z € A. O

In the following corollaries, we show the hyperstability for the quartic Lie -
derivations.
Corollary 3.4. Let r be positive real numbers with r < 4 and let f: A — M be an
even mapping with f(0) =0 such that

1AL f(a,b)[] < [lal["[[b]]"
Af (@,y) + f(2) = fE) ] < ll"llyll"]|=]]"

for all p € T', and a,b,z,y,2 € A. Then f is a quartic Lie x-derivation on A.
no
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Proof. By taking ¢(a,b,z,y,z) = (|[al[" + [|z|[")([[6]|" + |[y|["||z|]") in Theorem 3.2
for all a,b,x,y,z € A, we have 5(0, b,0,0,0) = 0. Hence the inequality (3.5) implies
that f = L, that is, f is a quartic Lie *-derivation on A. O

Corollary 3.5. Let r be positive real numbers with r < 4 and let f: A — M be an
even mapping with f(0) =0 such that

1A f (@, O)[] < [lal["][6])"

NAf(z,y) + £(z7) = fEI < ][yl + []2]]")
for all p € TY, and a,b,z,y,2 € A. Then f is a quartic Lie x-derivation on A.

no
Proof. By taking ¢(a,b, .y, =) — (llal|" +[[eI")([BII" + Iyl " +||2I|") in Theorem 3.2
for all a,b,z,y,z € A, we have ¢(0,b,0,0,0) = 0. Hence the inequality (3.5) implies
that f = L, that is, f is a quartic Lie *-derivation on A. O

Now, we will investigate the stability of the given functional equation (3.1) using
the alternative fixed point method. Before proceeding the proof, we will state the

theorem, the alternative of fixed point; see [11] and [15].

Definition 3.6. Let X be a set. A function d : X x X — [0, oo] is called a
generalized metric on X if d satisfies

(1) d(z, y) = 0 if and only if x = y;

(2) d(z, y) =d(y, x) for all z, y € X ;

(3) d(z, z) < d(z,y)+d(y, z) forall z, y, z € X .

Theorem 3.7 (The alternative of fixed point [11], [15] ). Suppose that we are given
a complete generalized metric space (2,d) and a strictly contractive mapping T :

Q — Q with Lipschitz constant I. Then for each given x € §2, either
d(T"z, T"'2) = 0o for alln >0,
or there exists a natural number ng such that
(1) d(T"z, T" 'x) < 0o for alln > ng;

(2) The sequence (T™x) is convergent to a fized point y* of T';
(3) y* is the unique fized point of T in the set

A =A{y € Qd(T"z,y) < oo};

(4) d(y,y*) < 75 d(y, Ty) for ally € A



398 HeeJEONG KOH

Theorem 3.8. Let f: A — M be a continuous even mapping with f(0) =0 and let

¢: A5 — [0,00) be a continuous mapping such that

(312) ||A,U«f(a7b)” S ¢(aab707070)

(3.13) [Af(z,y) + f(z%) — f(z)"]] < 6(0,0,2,y, 2)
for all p € T', and a,b,z,y,z € A. If there exists a constant | € (0,1) such that

0

(3.14) d(sa, sb, sz, sy, sz) < |s|*o(a,b,z,y, 2)
for all a,b,z,y,z € A, then there exists a quartic Lie x-derivation L : A — M
satisfying
1
3.15 b) — L(b)|| € =——————<¢(0,b,0,0,0
(315) 17(6) = LB < gy —350(0.0.0.0.0)
forallbe A.

Proof. Consider the set
Q={glg: A— A,g(0)=0}
and introduce the generalized metric on €,
d(g, h) =inf{c € (0,00) | || g(b) — h(b) [|< c¢(0,5,0,0,0),for all b € A}.
It is easy to show that (€2, d) is complete. Now we define a function 7": Q — Q by
(3.16) T(9)(8) = 5(st)

for all b € A. Note that for all g,h € Q, let ¢ € (0, c0) be an arbitrary constant
with d(g,h) < c¢. Then

(3.17) [lg(b) = h(D)[| < ¢(0,,0,0,0)

for all b € A. Letting b = sb in the inequality (3.17) and using (3.14) and (3.16), we

have

1T(9)(b) = T(R)(B)]] = ,81,4!!9(86)—h(85)\

1
B ¢ (0, 5b,0,0,0) < cl¢(0,b,0,0,0),

IN

that is,
d(Tg, Th) <cl.
Hence we have that
d(Tg, Th) <ld(g, h),
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for all g,h € ), that is, T is a strictly self-mapping of 2 with the Lipschitz constant
l. Letting 4 = 1,a = 0 in the inequality (3.12), we get

1 1
152 £(s0) = FO)l| < W¢(07b,0,0,0)

for all b € A. This means that
1

d(T <
( f’ f) — 2’8’4
We can apply the alternative of fixed point and since lim,, oo d(T" f, L) = 0, there
exists a fixed point L of T in 2 such that
b
(3.18) L(b) = lim f(s"0)

11— 00 8471 )

for all b € A. Hence

1 1 1
d(f,L) < 1—d(Tf,f) = ST

This implies that the inequality (3.15) holds for all b € A. Since [ € (0,1), the
inequality (3.14) shows that

=0.

(3.19) lim o(s"a, s"b, s"x, s"y, s"z)
: n—o00 ’8’471
Replacing a,b by s™a, s™b, respectively, in the inequality (3.12), we have
1 1A, f(s"a, 5"B)]| < ¢(s"a, s"b,0,0,0)
I ; = :

|8|4n

‘S‘4n
Taking the limit as k tend to infinity, we have A, f(a,b) =0 for all a,b € A and all

wE Ti . The remains are similar to the proof of Theorem 3.2. O
’(LO

Corollary 3.9. Let 0,r be positive real numbers with r < 4 and let f: A — M be
a mapping with f(0) =0 such that
1AL f(a,b)[] < O(][all” + [[b]]")

Af(z,y) + f(z) = F(2)"I < Ol + llyll" +[I=]]")
for all p € TY and a,b,z,y,2 € A. Then there exists a unique quartic Lie *-

no
derivation L : A — M satisfying

1£(b) - Lb)|| < 2|T4”(b1”_l)

forallbe A.

Proof. The proof follows from Theorem 3.8 by taking ¢(a,b,x,y,z) = 0(||a||” +
[OI1" + [][" + [ly[[" + [[2]]") for all a,b,2,y,2 € A. O
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In the following corollaries, we show the hyperstability for the quartic Lie -

derivations.

Corollary 3.10. Let r be positive real numbers with r < 4 and let f : A — M be
an even mapping with f(0) = 0 such that

1A (@, O)[] < [lal["][o]]"

Af(@,y) + f(z7) = )< |lz]["|yl]"]]2]]"
for all p € TY, and a,b,z,y,2 € A. Then f is a quartic Lie x-derivation on A.

70
Proof. By taking ¢(a, b,,y, 2) = (Ilall"+||a]I")([bII" + Iyl "[|2") in Theorem 3.8 for
all a,b,z,y,z € A, we have g(O,b,0,0,0) = 0. Hence the inequality (3.15) implies
that f = L, that is, f is a quartic Lie *-derivation on A. O

Corollary 3.11. Let r be positive real numbers with v < 4 and let f : A — M be
an even mapping with f(0) = 0 such that

1AL (a, 0)[| < lal["[[bl]]"

IAf(@,y) + f(z7) = FET < Ml Ulyll" + [12]]")
for all p € TY, and a,b,z,y,2 € A. Then f is a quartic Lie x-derivation on A.

no
Proof. By taking ¢(a,b,z,y,z) = (||a|["+ |[=[|")([|6|[" + |ly|[" +[z]|") in Theorem 3.8
foralla,b,z,y,z € A, we have ¢(0,b,0,0,0) = 0. Hence the inequality (3.15) implies
that f = L, that is, f is a quartic Lie *-derivation on A. g
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