• 제목/요약/키워드: KOH activation

검색결과 216건 처리시간 0.023초

K2CO3 처리된 Coal Tar Pitch 활성탄 전극의 결정성 및 EDLC 성능 (Structural Characterization and EDLC-Electrode Performance of Coal-Tar-Pitch Activated Carbon Using K2CO3 Treatment)

  • 최푸름;정지철;임연수;김명수
    • 한국재료학회지
    • /
    • 제26권9호
    • /
    • pp.460-467
    • /
    • 2016
  • Activated carbons (ACs) have been used as EDLC (electric double-layer capacitor) electrode materials due to their high specific area, stability, and ecological advantages. In order to prepare ACs with high density and crystallinity, coal tar pitch (CTP) was activated by $K_2CO_3$ and the textural and electrochemical properties of the obtained ACs were investigated. Although the CTP ACs formed by $K_2CO_3$ activation had much smaller specific surface area and pore volume than did the CTP ACs formed by KOH activation, their volumetric specific capacitance (F/cc) levels as electrode materials for EDLC were comparable due to their higher density and micro-crystallinity. Structural characterization and EDLC-electrode performance were studied with different activation conditions of $CTP/K_2CO_3$ ratio, activation temperature, and activation period.

수산화물에 의해 활성화된 OXI-PAN계 섬유의 제조 및 특성 (Preparation and Characterization of OXI-PAN Based Carbon Fibers Activated by Hydroxides)

  • 문숙영;한동윤;이병하;임연수
    • 한국세라믹학회지
    • /
    • 제42권7호
    • /
    • pp.469-474
    • /
    • 2005
  • Activated Carbon Fibers (ACFs) are widely used as adsorbents in technologies related to pollution abatement due to their highly porous structure and large adsorption capacity. The porous structure and surface area of ACFs depends strongly on both the activation processes arid the nature .of the precursors. The chemical activation with hydroxides has recently been, of great interest as it permits the preparation of activated carbon fibers with highly developed porosity. In this work, OXI-PAN fiber used as precursor for the preparation of activated carbon fibers by chemical activation with KOH and NaOH. The affects of several activation conditions on the surface properties, pore size distribution and adsorption capacity of Ag ion and Iodine ion on ACFs studied.

초고용량 커패시터 전극활성물질용 고밀도 활성탄 제조 및 특성 연구 (Study on High Density Activated Carbons for Electrode Materials of Supercapacitor)

  • 노광철;박진배;이철태;박철완
    • 공업화학
    • /
    • 제18권4호
    • /
    • pp.381-385
    • /
    • 2007
  • 본 논문은 코크스를 출발물질로 사용하여 KOH로 활성화시킴으로써 초고용량 커패시터의 전극활성물질인 고밀도 활성탄을 제조하였다. 활성화 시에 약품량을 줄이고 합성 조건을 제어함으로써 활성탄의 비표면적을 줄였다. 활성탄 비표면적은 $500{\sim}1260m^2/g$을 나타내었고, 전극밀도는 $0.68{\sim}0.83g/cm^3$로 측정되었다. 풀셀을 구성하여 용량 측정을 한 결과, 최고 20F/cc의 체적 당 용량 값(하프 셀 기준 95 F/cc 정도)을 보여 페놀레진 기반의 상용 활성탄에 비하여 상대적인 우위를 보였다.

하수슬러지를 이용한 활성탄 개발에 관한 연구 (A Study on the Development of Activated Carbons from Sewage Sludge)

  • 이택룡;정찬교;조영천
    • 청정기술
    • /
    • 제15권1호
    • /
    • pp.31-37
    • /
    • 2009
  • 본 연구는 하수슬러지 탄화물과 활성화제의 화학적 활성화반응을 이용한 활성탄 제조공정을 다루고 있다. 일반적으로 활성화제로는 알칼리 약품을 이용하는데 본 연구에서는 탄소와 활성화반응이 잘 이루어지는 KOH와 NaOH를 사용하였다. 실험결과, KOH로 제조된 활성탄이 NaOH로 제조된 활성탄보다 요오드 흡착력과 비표면적(BET) 등의 물성이 우수하였다. 하수슬러지 탄화물과 활성화제의 최적 침적비율은 KOH 75 wt%, NaOH 50 wt%임을 알 수 있었다. 5 M 염산용액으로 세척하여 중화시킨 후 증류수로 세정하는 활성탄 세정방법을 사용하였다. 본 연구의 최적 실험조건에서 하수슬러지 탄화물을 이용하여 제조된 활성탄의 경우 BET표면적 값이 약 $600m^2/g$에 이르렀다.

(E)-1-(2-(2-nitrovinyl)phenyl)pyrrolidine inhibits Inducible Nitric Oxide Synthase Expression in RAW264.7 Macrophages Stimulated with Lipopolysaccharide

  • Gu, Gyo-Jeong;Eom, Sang-Hoon;Suh, Chang Won;Koh, Kwang Oh;Kim, Dae Young;Youn, Hyung-Sun
    • 대한의생명과학회지
    • /
    • 제19권2호
    • /
    • pp.168-172
    • /
    • 2013
  • Toll-like receptors (TLRs) play an important role for host defense against invading pathogens. TLR4 has been identified as the receptor for lipopolysaccharide (LPS), which is a cell wall component of gram-negative bacteria. The activation of TLR4 signaling by LPS leads to the activation of NF-${\kappa}B$ and the expression of pro-inflammatory gene products such as cytokines, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). To evaluate the therapeutic potential of (E)-1-(2-(2-nitrovinyl)phenyl)pyrrolidine (NVPP), previously synthesized in our laboratory, NF-${\kappa}B$ activation and iNOS and COX-2 expression induced by LPS were examined. NVPP inhibited the activation of NF-${\kappa}B$ induced by LPS. NVPP also suppressed the iNOS expression induced by LPS but it did not suppress COX-2 expression induced by LPS. These results suggest that NVPP has the specific mechanism for anti-inflammatory responses.

CH3OH/H2O 가스의 기상활성법을 이용한 다이아몬드 박막성장 과정에서의 OES분석 (OES Analysis for Diamond Film Growth by Vapor Activation Method Using CH3OH/H2O Gas)

  • 이권재;고재귀;신재수
    • 한국재료학회지
    • /
    • 제13권1호
    • /
    • pp.31-35
    • /
    • 2003
  • The intensity is measured as functions of both distance from filament to substrate and $CH_3$OH/($CH_3$OH+$H_2$O) ratio by OES(Optical Emission Spectroscopy) to investigate the effects of activation species such as $H_{\alpha}$, $H_{\beta}$, H$\Upsilon\;C_3$, CH on diamond film growth.$ H_{\alpha}$ increases as $CH_3$OH composition decreases, while CH increases as $CH_3$OH composition increases. The intensity of $H_{\alpha}$ decreases as the distance increases and that of CH increases as the distance increases. The intensities of other activation species of $H_{\beta}$, H$\Upsilon\;C_3$, do not vary as a function of measured position distance. It varies randomly. It means that various parameters for depositing diamond thin film can be explained by the intensity(density) change of activation species, as a function of the distance of the filament.

Influence of Pyrolysis Conditions and Type of Resin on the Porosity of Activated Carbon Obtained From Phenolic Resins

  • Agarwal, Damyanti;Lal, Darshan;TripathiN, V.S.;Mathur, G.N.
    • Carbon letters
    • /
    • 제4권2호
    • /
    • pp.57-63
    • /
    • 2003
  • In polymer precursor based activated carbon, the structure of starting material is likely to have profound effect on the surface properties of end product. To investigate this aspect phenolic resins of different types were prepared using phenol, mcresol and formaldehyde as reactants and $Et_3N$ and $NH_4OH$ as catalyst. Out of these resins two resol resins PFR1 and CFR1 (prepared in excess of formaldehyde using $Et_3N$ as catalyst in the basic pH range) were used as raw materials for the preparation of activated carbons by both chemical and physical activation methods. In chemical activation process both the resins gave activated carbons with high surface areas i.e. 2384 and 2895 $m^2/g$, but pore size distribution in PFR1 resin calculated from Horvath-Kawazoe method, contributes mainly in micropore range i.e. 84.1~88.7 volume percent of pores was covered by micropores. Whereas CFR1 resin when activated with KOH for 2h time, a considerable amount (32.8%) of mesopores was introduced in activated carbon prepared. Physical activation with $CO_2$ leads to the formation of activated carbon with a wide range of surface area (503~1119 $m^2/g$) with both of these resins. The maximum pore volume percentage was obtained in 3-20 ${\AA}$ region by physical activation method.

  • PDF

리오셀 표면개질공정을 도입한 ACF 제조 및 특성 (Preparation and Characterization of ACF Using Lyocell Adopting Surface Modification Process)

  • 조영혁;진영민;이순홍
    • 한국안전학회지
    • /
    • 제31권1호
    • /
    • pp.66-73
    • /
    • 2016
  • Lyocell fibers were used as a precursor in order to improve yield and strength of cellulose-based precursor while manufacturing activated carbon fiber(ACF). Lyocell fibers as a precursor for the preparation of ACF were surface-modified by reaction with 3-aminopropyltriethoxysilane(APTES) and pre-treated with KOH and H3PO4. Using aforementioned precursor, ACFs were prepared by a series of stabilization, carbonization and activation process at high temperatures. On each process, FT-IR, TGA, UTM and SEM were used to observe fibers' physical properties including structure and porous surfaces. FT-IR results proved that surface modification was achieved during stabilization, carbonization and activation process. TGA results during carbonization process found that surface modified fibers with APTES 0.02 mol(A2) showed higher thermostability, and extended pre-treatment increased yield. Especially, yield was found to have an increase of 10~20 wt% with surface modification during activation process. UTM results showed that tensile strength has the same order of concentration of APTES after surface modification, however, was found to show lower tensile strength than lyocell fibers after stabilization process. SEM results revealed that more homogeneous porosity control could be proceed after modifying the surface for the effective removal of hazardous substances.

Immune Enhancing Effect by Orally-Administered Mixture of Saccharomyces cerevisiae and Fermented Rice Bran

  • KOH, JONG HO;JIN MAN KIM;HYUNG JOO SUH
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권2호
    • /
    • pp.196-201
    • /
    • 2003
  • The mixture (PM) of Saccharomyces cerevisiae and fermented rice bran on the activation of macrophage and bone marrow cell proliferation was studied in mice. PM stimulated not only the activation of macrophage (1.8-fold of saline) but also IL-6 production from macrophage (1.5-fold) at 2.0 g/㎏/day during 7 days of oral administration. By the culture supernatant of Peyer's patch cells from C3H/HeJ mice fed PM at 2.0 g/㎏/day for 7 days, the bone marrow cells significantly proliferated compared with that of mice receiving only saline (1.7-fold). In addition, the contents of GM-CSF and IL-6 in the culture supernatant of Peyer's patch cells from mice fed PM at 2.0 g/㎏/day were increased in comparison with those from the control (1.8 and 1.4-fold, respectively). These results revealed that oral administration of PM may modulate IL-6 production to induce the activation of macrophage, and also enhance secretion of hematopoietic growth factors such as GM-CSF and IL-6 from Peyer's patch cells.

Adsorptive removal of atmospheric pollutants over Pyropia tenera chars

  • Lee, Heejin;Park, Rae-su;Lee, Hyung Won;Hong, Yeojin;Lee, Yejin;Park, Sung Hoon;Jung, Sang-Chul;Yoo, Kyung-Seun;Jeon, Jong-Ki;Park, Young-Kwon
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.79-88
    • /
    • 2016
  • As a replacement for activated carbon, biochar was synthesized and used for the adsorptive removal of formaldehyde and nitrogen oxide. Biochar was produced from the fast pyrolysis of the red marine macro alga, Pyropia tenera. The P. tenera char was then activated with steam, ammonia and KOH to alter its characteristics. The adsorption of formaldehyde, which is one of the main indoor air pollutants, onto the seaweed char was performed using 1-ppm formaldehyde and the char was activated using a range of methods. The char activated with both the KOH and ammonia treatments showed the highest adsorptive removal efficiency, followed by KOH-treated char, ammonia-treated char, steam-treated char, and non-activated char. The removal of 1000-ppm NO over untreated char, KOH-treated char, and activated carbon was also tested. While the untreated char exhibited little activity, the KOH-treated char removed 80% of the NO at 50℃, which was an even higher NO removal efficiency than that achieved by activated carbon.