• Title/Summary/Keyword: KNN technology

Search Result 71, Processing Time 0.028 seconds

KNN-based Image Annotation by Collectively Mining Visual and Semantic Similarities

  • Ji, Qian;Zhang, Liyan;Li, Zechao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4476-4490
    • /
    • 2017
  • The aim of image annotation is to determine labels that can accurately describe the semantic information of images. Many approaches have been proposed to automate the image annotation task while achieving good performance. However, in most cases, the semantic similarities of images are ignored. Towards this end, we propose a novel Visual-Semantic Nearest Neighbor (VS-KNN) method by collectively exploring visual and semantic similarities for image annotation. First, for each label, visual nearest neighbors of a given test image are constructed from training images associated with this label. Second, each neighboring subset is determined by mining the semantic similarity and the visual similarity. Finally, the relevance between the images and labels is determined based on maximum a posteriori estimation. Extensive experiments were conducted using three widely used image datasets. The experimental results show the effectiveness of the proposed method in comparison with state-of-the-arts methods.

K-Nearest Neighbor Associative Memory with Reconfigurable Word-Parallel Architecture

  • An, Fengwei;Mihara, Keisuke;Yamasaki, Shogo;Chen, Lei;Mattausch, Hans Jurgen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.405-414
    • /
    • 2016
  • IC-implementations provide high performance for solving the high computational cost of pattern matching but have relative low flexibility for satisfying different applications. In this paper, we report an associative memory architecture for k nearest neighbor (KNN) search, which is one of the most basic algorithms in pattern matching. The designed architecture features reconfigurable vector-component parallelism enabled by programmable switching circuits between vector components, and a dedicated majority vote circuit. In addition, the main time-consuming part of KNN is solved by a clock mapping concept based weighted frequency dividers that drastically reduce the in principle exponential increase of the worst-case search-clock number with the bit width of vector components to only a linear increase. A test chip in 180 nm CMOS technology, which has 32 rows, 8 parallel 8-bit vector-components in each row, consumes altogether in peak 61.4 mW and only 11.9 mW for nearest squared Euclidean distance search (at 45.58 MHz and 1.8 V).

Deterministic and probabilistic analysis of tunnel face stability using support vector machine

  • Li, Bin;Fu, Yong;Hong, Yi;Cao, Zijun
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.17-30
    • /
    • 2021
  • This paper develops a convenient approach for deterministic and probabilistic evaluations of tunnel face stability using support vector machine classifiers. The proposed method is comprised of two major steps, i.e., construction of the training dataset and determination of instance-based classifiers. In step one, the orthogonal design is utilized to produce representative samples after the ranges and levels of the factors that influence tunnel face stability are specified. The training dataset is then labeled by two-dimensional strength reduction analyses embedded within OptumG2. For any unknown instance, the second step applies the training dataset for classification, which is achieved by an ad hoc Python program. The classification of unknown samples starts with selection of instance-based training samples using the k-nearest neighbors algorithm, followed by the construction of an instance-based SVM-KNN classifier. It eventually provides labels of the unknown instances, avoiding calculate its corresponding performance function. Probabilistic evaluations are performed by Monte Carlo simulation based on the SVM-KNN classifier. The ratio of the number of unstable samples to the total number of simulated samples is computed and is taken as the failure probability, which is validated and compared with the response surface method.

Shield TBM disc cutter replacement and wear rate prediction using machine learning techniques

  • Kim, Yunhee;Hong, Jiyeon;Shin, Jaewoo;Kim, Bumjoo
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.249-258
    • /
    • 2022
  • A disc cutter is an excavation tool on a tunnel boring machine (TBM) cutterhead; it crushes and cuts rock mass while the machine excavates using the cutterhead's rotational movement. Disc cutter wear occurs naturally. Thus, along with the management of downtime and excavation efficiency, abrasioned disc cutters need to be replaced at the proper time; otherwise, the construction period could be delayed and the cost could increase. The most common prediction models for TBM performance and for the disc cutter lifetime have been proposed by the Colorado School of Mines and Norwegian University of Science and Technology. However, design parameters of existing models do not well correspond to the field values when a TBM encounters complex and difficult ground conditions in the field. Thus, this study proposes a series of machine learning models to predict the disc cutter lifetime of a shield TBM using the excavation (machine) data during operation which is response to the rock mass. This study utilizes five different machine learning techniques: four types of classification models (i.e., K-Nearest Neighbors (KNN), Support Vector Machine, Decision Tree, and Staking Ensemble Model) and one artificial neural network (ANN) model. The KNN model was found to be the best model among the four classification models, affording the highest recall of 81%. The ANN model also predicted the wear rate of disc cutters reasonably well.

Study on Weather Data Interpolation of a Buoy Based on Machine Learning Techniques (기계 학습을 이용한 항로표지 기상 자료의 보간에 관한 연구)

  • Seong-Hun Jeong;Jun-Ik Ma;Seong-Hyun Jo;Gi-Ryun Lim;Jun-Woo Lee;Jun-Hee Han
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.72-74
    • /
    • 2022
  • Several types of data are collected from buoy due to the development of hardware technology.. However, the collected data are difficult to use due to errors including missing values and outliers depending on mechanical faults and meteorological environment. Therefore, in this study, linear interpolation is performed by adding the missing time data to enable machine learning to the insufficient meteorological data. After the linear interpolation, XGBoost and KNN-regressor, are used to forecast error data and suggested model is evaluated by using real-world data of a buoy.

  • PDF

Ring-Type Rotary Ultrasonic Motor Using Lead-free Ceramics

  • Hong, Chang-Hyo;Han, Hyoung-Su;Lee, Jae-Shin;Wang, Ke;Yao, Fang-Zhou;Li, Jing-Feng;Gwon, Jung-Ho;Quyet, Nguyen Van;Jung, Jin-Kyung;Jo, Wook
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.228-231
    • /
    • 2015
  • Ultrasonic motors provide high torques and quick responses compared to their magnetic counterparts; therefore, they are widely used in small-scale applications such as mobile phones, microrobots, and auto-focusing modules in digital cameras. To determine the feasibility of lead-free piezoceramics for ultrasonic motor applications, we fabricated a ring-type piezoceramic with a KNN-based lead-free piezoceramic (referred to as CZ5), intended for use in an auto-focusing module of a digital camera. The vibration of the lead-free stator was observed at 45.1 kHz. It is noteworthy that the fully assembled lead-free ultrasonic motor exhibited a revolution speed of 5-7 rpm, even though impedance matching with neighboring components was not considered. This result suggests that the tested KNN-based piezoceramic has great potential for use in ultrasonic motor applications, requiring minimal modifications to existing lead-based systems.

Study of Localization Based on Fingerprinting Technique Using Uplink CSI in Cloud Radio Access Network (클라우드 무선접속 네트워크에서 상향링크 채널 상태 정보를 이용한 핑거프린팅 기반 실내 측위에 관한 연구 시스템)

  • Woo, Sangwoo;Lee, Sangheon;Mun, Cheol
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2019
  • With 5G standards proceeding in earnest and increasing demand for services of indoor localization, research on indoor location recognition is being studied in various industrial fields, and research based on fingerprint recognition technology using Wireless Local Area Network (WLAN) is representative. In this paper, we propose an indoor positioning system based on fingerprinting technique that uses Cloud Radio Access Network (C-RAN) architecture and Channel State Information (CSI). In order to improve the performance in indoor positioning, we combined existing fingerprinting method and K nearest neighbor (KNN) technology which is one of the machine running technique. The performance improvements of the proposed indoor positioning system was verified by comparative experiments with the existing localization technique in a indoor localizztion testbed.

A Study of Travel Time Prediction using K-Nearest Neighborhood Method (K 최대근접이웃 방법을 이용한 통행시간 예측에 대한 연구)

  • Lim, Sung-Han;Lee, Hyang-Mi;Park, Seong-Lyong;Heo, Tae-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.835-845
    • /
    • 2013
  • Travel-time is considered the most typical and preferred traffic information for intelligent transportation systems(ITS). This paper proposes a real-time travel-time prediction method for a national highway. In this paper, the K-nearest neighbor(KNN) method is used for travel time prediction. The KNN method (a nonparametric method) is appropriate for a real-time traffic management system because the method needs no additional assumptions or parameter calibration. The performances of various models are compared based on mean absolute percentage error(MAPE) and coefficient of variation(CV). In real application, the analysis of real traffic data collected from Korean national highways indicates that the proposed model outperforms other prediction models such as the historical average model and the Kalman filter model. It is expected to improve travel-time reliability by flexibly using travel-time from the proposed model with travel-time from the interval detectors.

Research on Damage Identification of Buried Pipeline Based on Fiber Optic Vibration Signal

  • Weihong Lin;Wei Peng;Yong Kong;Zimin Shen;Yuzhou Du;Leihong Zhang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.511-517
    • /
    • 2023
  • Pipelines play an important role in urban water supply and drainage, oil and gas transmission, etc. This paper presents a technique for pattern recognition of fiber optic vibration signals collected by a distributed vibration sensing (DVS) system using a deep learning residual network (ResNet). The optical fiber is laid on the pipeline, and the signal is collected by the DVS system and converted into a 64 × 64 single-channel grayscale image. The grayscale image is input into the ResNet to extract features, and finally the K-nearest-neighbors (KNN) algorithm is used to achieve the classification and recognition of pipeline damage.

A Study on Performance Comparison of Machine Learning Algorithm for Scaffold Defect Classification (인공지지체 불량 분류를 위한 기계 학습 알고리즘 성능 비교에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.77-81
    • /
    • 2020
  • In this paper, we create scaffold defect classification models using machine learning based data. We extract the characteristic from collected scaffold external images using USB camera. SVM, KNN, MLP algorithm of machine learning was using extracted features. Classification models of three type learned using train dataset. We created scaffold defect classification models using test dataset. We quantified the performance of defect classification models. We have confirmed that the SVM accuracy is 95%. So the best performance model is using SVM.