• Title/Summary/Keyword: KNN Model

Search Result 98, Processing Time 0.025 seconds

A Model Stacking Algorithm for Indoor Positioning System using WiFi Fingerprinting

  • JinQuan Wang;YiJun Wang;GuangWen Liu;GuiFen Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1200-1215
    • /
    • 2023
  • With the development of IoT and artificial intelligence, location-based services are getting more and more attention. For solving the current problem that indoor positioning error is large and generalization is poor, this paper proposes a Model Stacking Algorithm for Indoor Positioning System using WiFi fingerprinting. Firstly, we adopt a model stacking method based on Bayesian optimization to predict the location of indoor targets to improve indoor localization accuracy and model generalization. Secondly, Taking the predicted position based on model stacking as the observation value of particle filter, collaborative particle filter localization based on model stacking algorithm is realized. The experimental results show that the algorithm can control the position error within 2m, which is superior to KNN, GBDT, Xgboost, LightGBM, RF. The location accuracy of the fusion particle filter algorithm is improved by 31%, and the predicted trajectory is close to the real trajectory. The algorithm can also adapt to the application scenarios with fewer wireless access points.

Machine Learning-Based Rapid Prediction Method of Failure Mode for Reinforced Concrete Column (기계학습 기반 철근콘크리트 기둥에 대한 신속 파괴유형 예측 모델 개발 연구)

  • Kim, Subin;Oh, Keunyeong;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.113-119
    • /
    • 2024
  • Existing reinforced concrete buildings with seismically deficient column details affect the overall behavior depending on the failure type of column. This study aims to develop and validate a machine learning-based prediction model for the column failure modes (shear, flexure-shear, and flexure failure modes). For this purpose, artificial neural network (ANN), K-nearest neighbor (KNN), decision tree (DT), and random forest (RF) models were used, considering previously collected experimental data. Using four machine learning methodologies, we developed a classification learning model that can predict the column failure modes in terms of the input variables using concrete compressive strength, steel yield strength, axial load ratio, height-to-dept aspect ratio, longitudinal reinforcement ratio, and transverse reinforcement ratio. The performance of each machine learning model was compared and verified by calculating accuracy, precision, recall, F1-Score, and ROC. Based on the performance measurements of the classification model, the RF model represents the highest average value of the classification model performance measurements among the considered learning methods, and it can conservatively predict the shear failure mode. Thus, the RF model can rapidly predict the column failure modes with simple column details.

Prediction models of rock quality designation during TBM tunnel construction using machine learning algorithms

  • Byeonghyun Hwang;Hangseok Choi;Kibeom Kwon;Young Jin Shin;Minkyu Kang
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.507-515
    • /
    • 2024
  • An accurate estimation of the geotechnical parameters in front of tunnel faces is crucial for the safe construction of underground infrastructure using tunnel boring machines (TBMs). This study was aimed at developing a data-driven model for predicting the rock quality designation (RQD) of the ground formation ahead of tunnel faces. The dataset used for the machine learning (ML) model comprises seven geological and mechanical features and 564 RQD values, obtained from an earth pressure balance (EPB) shield TBM tunneling project beneath the Han River in the Republic of Korea. Four ML algorithms were employed in developing the RQD prediction model: k-nearest neighbor (KNN), support vector regression (SVR), random forest (RF), and extreme gradient boosting (XGB). The grid search and five-fold cross-validation techniques were applied to optimize the prediction performance of the developed model by identifying the optimal hyperparameter combinations. The prediction results revealed that the RF algorithm-based model exhibited superior performance, achieving a root mean square error of 7.38% and coefficient of determination of 0.81. In addition, the Shapley additive explanations (SHAP) approach was adopted to determine the most relevant features, thereby enhancing the interpretability and reliability of the developed model with the RF algorithm. It was concluded that the developed model can successfully predict the RQD of the ground formation ahead of tunnel faces, contributing to safe and efficient tunnel excavation.

A Study on Performance Comparison of Machine Learning Algorithm for Scaffold Defect Classification (인공지지체 불량 분류를 위한 기계 학습 알고리즘 성능 비교에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.77-81
    • /
    • 2020
  • In this paper, we create scaffold defect classification models using machine learning based data. We extract the characteristic from collected scaffold external images using USB camera. SVM, KNN, MLP algorithm of machine learning was using extracted features. Classification models of three type learned using train dataset. We created scaffold defect classification models using test dataset. We quantified the performance of defect classification models. We have confirmed that the SVM accuracy is 95%. So the best performance model is using SVM.

Facial Expression Recognition using Model-based Feature Extraction in Image Sequence (동영상에서의 모델기반 특징추출을 이용한 얼굴 표정인식)

  • Park Mi-Ae;Choi Sung-In;Im Don-Gak;Ko Je-Pil
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.343-345
    • /
    • 2006
  • 본 논문에서는 ASM(Active Shape Model)과 상태 기반 모델을 사용하여 동영상으로부터 얼굴 표정을 인식하는 방법을 제안한다. ASM을 이용하여 하나의 입력영상에 대한 얼굴요소 특징점들을 정합하고 그 과정에서 생성되는 모양 파라미터 벡터를 추출한다. 동영상에 대해 추출되는 모양 파라미터 벡터 집합을 세 가지상태 중 한 가지를 가지는 상태 벡터로 변환하고 분류기를 통해 얼굴의 표정을 인식한다. 분류단계에서는 분류성능을 높이기 위해 새로운 개체 기반 학습 방법을 제안한다. 실험에서는 새로이 제안한 개체 기반 학습 방법이 KNN 분류기보다 더 좋은 인식률을 나타내는 것을 보인다.

  • PDF

Modelling the deflection of reinforced concrete beams using the improved artificial neural network by imperialist competitive optimization

  • Li, Ning;Asteris, Panagiotis G.;Tran, Trung-Tin;Pradhan, Biswajeet;Nguyen, Hoang
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.733-745
    • /
    • 2022
  • This study proposed a robust artificial intelligence (AI) model based on the social behaviour of the imperialist competitive algorithm (ICA) and artificial neural network (ANN) for modelling the deflection of reinforced concrete beams, abbreviated as ICA-ANN model. Accordingly, the ICA was used to adjust and optimize the parameters of an ANN model (i.e., weights and biases) aiming to improve the accuracy of the ANN model in modelling the deflection reinforced concrete beams. A total of 120 experimental datasets of reinforced concrete beams were employed for this aim. Therein, applied load, tensile reinforcement strength and the reinforcement percentage were used to simulate the deflection of reinforced concrete beams. Besides, five other AI models, such as ANN, SVM (support vector machine), GLMNET (lasso and elastic-net regularized generalized linear models), CART (classification and regression tree) and KNN (k-nearest neighbours), were also used for the comprehensive assessment of the proposed model (i.e., ICA-ANN). The comparison of the derived results with the experimental findings demonstrates that among the developed models the ICA-ANN model is that can approximate the reinforced concrete beams deflection in a more reliable and robust manner.

Personalized Size Recommender System for Online Apparel Shopping: A Collaborative Filtering Approach

  • Dongwon Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.39-48
    • /
    • 2023
  • This study was conducted to provide a solution to the problem of sizing errors occurring in online purchases due to discrepancies and non-standardization in clothing sizes. This paper discusses an implementation approach for a machine learning-based recommender system capable of providing personalized sizes to online consumers. We trained multiple validated collaborative filtering algorithms including Non-Negative Matrix Factorization (NMF), Singular Value Decomposition (SVD), k-Nearest Neighbors (KNN), and Co-Clustering using purchasing data derived from online commerce and compared their performance. As a result of the study, we were able to confirm that the NMF algorithm showed superior performance compared to other algorithms. Despite the characteristic of purchase data that includes multiple buyers using the same account, the proposed model demonstrated sufficient accuracy. The findings of this study are expected to contribute to reducing the return rate due to sizing errors and improving the customer experience on e-commerce platforms.

Development of Type 2 Prediction Prediction Based on Big Data (빅데이터 기반 2형 당뇨 예측 알고리즘 개발)

  • Hyun Sim;HyunWook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.999-1008
    • /
    • 2023
  • Early prediction of chronic diseases such as diabetes is an important issue, and improving the accuracy of diabetes prediction is especially important. Various machine learning and deep learning-based methodologies are being introduced for diabetes prediction, but these technologies require large amounts of data for better performance than other methodologies, and the learning cost is high due to complex data models. In this study, we aim to verify the claim that DNN using the pima dataset and k-fold cross-validation reduces the efficiency of diabetes diagnosis models. Machine learning classification methods such as decision trees, SVM, random forests, logistic regression, KNN, and various ensemble techniques were used to determine which algorithm produces the best prediction results. After training and testing all classification models, the proposed system provided the best results on XGBoost classifier with ADASYN method, with accuracy of 81%, F1 coefficient of 0.81, and AUC of 0.84. Additionally, a domain adaptation method was implemented to demonstrate the versatility of the proposed system. An explainable AI approach using the LIME and SHAP frameworks was implemented to understand how the model predicts the final outcome.

Machine Learning Based MMS Point Cloud Semantic Segmentation (머신러닝 기반 MMS Point Cloud 의미론적 분할)

  • Bae, Jaegu;Seo, Dongju;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.939-951
    • /
    • 2022
  • The most important factor in designing autonomous driving systems is to recognize the exact location of the vehicle within the surrounding environment. To date, various sensors and navigation systems have been used for autonomous driving systems; however, all have limitations. Therefore, the need for high-definition (HD) maps that provide high-precision infrastructure information for safe and convenient autonomous driving is increasing. HD maps are drawn using three-dimensional point cloud data acquired through a mobile mapping system (MMS). However, this process requires manual work due to the large numbers of points and drawing layers, increasing the cost and effort associated with HD mapping. The objective of this study was to improve the efficiency of HD mapping by segmenting semantic information in an MMS point cloud into six classes: roads, curbs, sidewalks, medians, lanes, and other elements. Segmentation was performed using various machine learning techniques including random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), and gradient-boosting machine (GBM), and 11 variables including geometry, color, intensity, and other road design features. MMS point cloud data for a 130-m section of a five-lane road near Minam Station in Busan, were used to evaluate the segmentation models; the average F1 scores of the models were 95.43% for RF, 92.1% for SVM, 91.05% for GBM, and 82.63% for KNN. The RF model showed the best segmentation performance, with F1 scores of 99.3%, 95.5%, 94.5%, 93.5%, and 90.1% for roads, sidewalks, curbs, medians, and lanes, respectively. The variable importance results of the RF model showed high mean decrease accuracy and mean decrease gini for XY dist. and Z dist. variables related to road design, respectively. Thus, variables related to road design contributed significantly to the segmentation of semantic information. The results of this study demonstrate the applicability of segmentation of MMS point cloud data based on machine learning, and will help to reduce the cost and effort associated with HD mapping.

Estimation of KOSPI200 Index option volatility using Artificial Intelligence (이기종 머신러닝기법을 활용한 KOSPI200 옵션변동성 예측)

  • Shin, Sohee;Oh, Hayoung;Kim, Jang Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1423-1431
    • /
    • 2022
  • Volatility is one of the variables that the Black-Scholes model requires for option pricing. It is an unknown variable at the present time, however, since the option price can be observed in the market, implied volatility can be derived from the price of an option at any given point in time and can represent the market's expectation of future volatility. Although volatility in the Black-Scholes model is constant, when calculating implied volatility, it is common to observe a volatility smile which shows that the implied volatility is different depending on the strike prices. We implement supervised learning to target implied volatility by adding V-KOSPI to ease volatility smile. We examine the estimation performance of KOSPI200 index options' implied volatility using various Machine Learning algorithms such as Linear Regression, Tree, Support Vector Machine, KNN and Deep Neural Network. The training accuracy was the highest(99.9%) in Decision Tree model and test accuracy was the highest(96.9%) in Random Forest model.