Soccer is type of sport that carries a high risk of injury. Injury is not only cause in the unlucky soccer carrier and also team performance as well as financial effects can be worse since soccer is a team-based game. The duration of recovery from a soccer injury typically relies on its type and severity. Therefore, we conduct this research in order to predict the probability of players injury type using machine learning technologies in this paper. Furthermore, we compare different machine learning models to find the best fit model. This paper utilizes various supervised classification machine learning models, including Decision Tree, Random Forest, K-Nearest Neighbors (KNN), and Naive Bayes. Moreover, based on our finding the KNN and Decision models achieved the highest accuracy rates at 70%, surpassing other models. The Random Forest model followed closely with an accuracy score of 62%. Among the evaluated models, the Naive Bayes model demonstrated the lowest accuracy at 56%. We gathered information about 54 professional soccer players who are playing in the top five European leagues based on their career history. We gathered information about 54 professional soccer players who are playing in the top five European leagues based on their career history.
This paper studied the collision detection of robot manipulators for safe collaboration in human-robot interaction. Based on sensor-based collision detection, external torque is detached from subtracting robot dynamics. To detect collision using joint torque sensor data, a comparative study was conducted using data-based machine learning algorithm. Data was collected from the actual 3 degree-of-freedom (DOF) robot manipulator, and the data was labeled by threshold and handwork. Using support vector machine (SVM), decision tree and k-nearest neighbors KNN method, we derive the optimal parameters of each algorithm and compare the collision classification performance. The simulation results are analyzed for each method, and we confirmed that by an optimal collision status detection model with high prediction accuracy.
본 연구에서는 국내 교육학 연구에서 거의 사용되지 않던 머신 러닝 기술을 과학 교육 연구에 접목하여, 학생들의 과학 논변 활동에서 나타나는 논변의 구성 요소를 분석하는 과정을 자동화할 수 있는 가능성을 탐색해보았다. 학습 데이터로는 Toulmin이 제안하였던 틀에 따라 학생들의 과학 논변 구성 요소를 코딩한 국내 선행 문헌 18건을 수합하고 정리하여 990개의 문장을 추출하였으며, 테스트 데이터로는 실제 교실 환경에서 발화된 과학 논변 전사 데이터를 사용하여 483개의 문장을 추출하고 연구자들이 사전 코딩을 수행하였다. Python의 'KoNLPy' 패키지와 '꼬꼬마(Kkma)' 모듈을 사용한 한국어 자연어 처리(Natural Language Processing, NLP)를 통해 개별 논변을 구성하는 단어와 형태소를 분석하였으며, 연구자 2인과 국어교육 석사학위 소지자 1인의 검토 과정을 거쳤다. 총 1,473개의 문장에 대한 논변-형태소:품사 행렬을 만든 후에 다섯 가지 방법으로 머신 러닝을 수행하고 생성된 예측 모델과 연구자의 사전 코딩을 비교한 결과, 개별 문장의 형태소만을 고려하였을 때에는 k-최근접 이웃 알고리즘(KNN)이 약 54%의 일치도(${\kappa}=0.22$)를 보임으로써 가장 우수하였다. 직전 문장이 어떻게 코딩되어 있는지에 관한 정보가 주어졌을 때, k-최근접 이웃 알고리즘(KNN)이 약 55%의 일치도(${\kappa}=0.24$)를 보였으며 다른 머신 러닝 기법에서도 전반적으로 일치도가 상승하였다. 더 나아가, 본 연구의 결과는 과학 논변 활동의 분석에서 개별문장을 고려하는 단순한 방법이 어느 정도 유용함과 동시에, 담화의 맥락을 고려하는 것 또한 필요함을 데이터에 기반하여 보여주었다. 또한 머신 러닝을 통해 교실에서 한국어로 이루어진 과학 논변 활동을 분석하여 연구자와 교사들에게 유용하게 사용될 수 있는 가능성을 보여준다.
3D open-field farm model developed from UAV (Unmanned Aerial Vehicle) data could make crop monitoring easier, also could be an important dataset for various fields like remote sensing or precision agriculture. It is essential to separate crops from the non-crop area because labeling in a manual way is extremely laborious and not appropriate for continuous monitoring. We, therefore, made a 3D open-field farm model based on UAV images and developed a crop segmentation model using a supervised machine learning algorithm. We compared performances from various models using different data features like color or geographic coordinates, and two supervised learning algorithms which are SVM (Support Vector Machine) and KNN (K-Nearest Neighbors). The best approach was trained with 2-dimensional data, ExGR (Excess of Green minus Excess of Red) and z coordinate value, using KNN algorithm, whose accuracy, precision, recall, F1 score was 97.85, 96.51, 88.54, 92.35% respectively. Also, we compared our model performance with similar previous work. Our approach showed slightly better accuracy, and it detected the actual crop better than the previous approach, while it also classified actual non-crop points (e.g. weeds) as crops.
통행시간은 교통정보 중에서 가장 대표적이고 이용자 선호도가 높은 정보이다. 본 연구에서는 일반국도를 대상으로 실시간 시스템에 적용 가능한 통행시간 예측 방법을 개발하고자 하였다. 통행시간 예측방법으로 비모수적 접근 방법인 K 최대근접이웃 방법을 적용하였다. K 최대근접이웃 방법은 데이터에 대한 특별한 가정이 필요 없고, 모수 추정 과정이 필요 없어 실시간 교통관리시스템에 적합하다. K 최대근접이웃 방법의 우수성을 평가하기 위해 교통 분야에서 많이 적용되고 있는 이력자료 평균방법과 칼만 필터방법을 선정하여 평균절대백분율오차와 변동계수를 통해 평가하였다. 평가 결과 K 최대근접이웃 방법이 이력자료 평균방법과 칼만 필터방법에 비해 우수한 것으로 분석되었다. 통행시간 정보 제공 시 본 연구에서 개발된 방법을 통해 도출된 통행시간과 구간검지기로부터 관측된 통행시간을 탄력적으로 적용함으로써 통행시간 정보의 신뢰도를 향상시킬 수 있을 것으로 기대된다.
최근 전 세계적으로 당뇨병 유발률이 증가함에 따라 다양한 머신러닝과 딥러닝 기술을 통해 당뇨병을 예측하려고 는 연구가 이어지고 있다. 본 연구에서는 독일의 Frankfurt Hospital 데이터로 머신러닝 기법을 활용하여 당뇨병을 예측하는 모델을 제시한다. IQR(Interquartile Range) 기법을 이용한 이상치 처리와 피어슨 상관관계 분석을 적용하고 Decision Tree, Random Forest, Knn, SVM, 앙상블 기법인 XGBoost, Voting, Stacking로 모델별 당뇨병 예측 성능을 비교한다. 연구를 진행한 결과 Stacking ensemble 기법의 정확도가 98.75%로 가장 뛰어난 성능을 보였다. 따라서 해당 모델을 이용하여 현대 사회에 만연한 당뇨병을 정확히 예측하고 예방할 수 있다는 점에서 본 연구는 의의가 있다.
This study aims to compare the performance of each machine learning model for preparing a grid-based disaster risk map related to flooding in Jung-gu, Ulsan, for Typhoon Chaba which occurred in 2016. Dynamic data such as rainfall and river height, and static data such as building, population, and land cover data were used to conduct a risk analysis of flooding disasters. The data were constructed as 10 m-sized grid data based on the national point number, and a sample dataset was constructed using the risk value calculated for each grid as a dependent variable and the value of five influencing factors as an independent variable. The total number of sample datasets is 15,910, and the training, verification, and test datasets are randomly extracted at a 6:2:2 ratio to build a machine-learning model. Machine learning used random forest (RF), support vector machine (SVM), and k-nearest neighbor (KNN) techniques, and prediction accuracy by the model was found to be excellent in the order of SVM (91.05%), RF (83.08%), and KNN (76.52%). As a result of deriving the priority of influencing factors through the RF model, it was confirmed that rainfall and river water levels greatly influenced the risk.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권7호
/
pp.3714-3732
/
2019
With the rapid development of network, Intrusion Detection System(IDS) plays a more and more important role in network applications. Many data mining algorithms are used to build IDS. However, due to the advent of big data era, massive data are generated. When dealing with large-scale data sets, most data mining algorithms suffer from a high computational burden which makes IDS much less efficient. To build an efficient IDS over big data, we propose a classification algorithm based on data clustering and data reduction. In the training stage, the training data are divided into clusters with similar size by Mini Batch K-Means algorithm, meanwhile, the center of each cluster is used as its index. Then, we select representative instances for each cluster to perform the task of data reduction and use the clusters that consist of representative instances to build a K-Nearest Neighbor(KNN) detection model. In the detection stage, we sort clusters according to the distances between the test sample and cluster indexes, and obtain k nearest clusters where we find k nearest neighbors. Experimental results show that searching neighbors by cluster indexes reduces the computational complexity significantly, and classification with reduced data of representative instances not only improves the efficiency, but also maintains high accuracy.
When there is a missing value in the raw data, if ignore the missing values and proceed with the analysis, the accuracy decrease due to the decrease in the number of sample. The method of imputation and analyzing patterns and significant values can compensate for the problem of lower analysis quality and analysis accuracy as a result of bias rather than simply removing missing values. In this study, we proposed to study irregular data patterns and missing processing methods of data using machine learning techniques for the study of correction of missing values. we would like to propose a plan to replace the missing with data from a similar past point in time by finding the situation at the time when the missing data occurred. Unlike previous studies, data correction techniques present new algorithms using DNN and KNN-MLE techniques. As a result of the performance evaluation, the ANAE measurement value compared to the existing missing section correction algorithm confirmed a performance improvement of about 0.041 to 0.321.
International Journal of Computer Science & Network Security
/
제23권8호
/
pp.9-16
/
2023
Speech can actively elicit feelings and attitudes by using words. It is important for researchers to identify the emotional content contained in speech signals as well as the sort of emotion that resulted from the speech that was made. In this study, we studied the emotion recognition system using a database in Arabic, especially in the Saudi dialect, the database is from a YouTube channel called Telfaz11, The four emotions that were examined were anger, happiness, sadness, and neutral. In our experiments, we extracted features from audio signals, such as Mel Frequency Cepstral Coefficient (MFCC) and Zero-Crossing Rate (ZCR), then we classified emotions using many classification algorithms such as machine learning algorithms (Support Vector Machine (SVM) and K-Nearest Neighbor (KNN)) and deep learning algorithms such as (Convolution Neural Network (CNN) and Long Short-Term Memory (LSTM)). Our Experiments showed that the MFCC feature extraction method and CNN model obtained the best accuracy result with 95%, proving the effectiveness of this classification system in recognizing Arabic spoken emotions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.