References
- M. Bortolini, E. Ferrari, M. Gamberi, F. Pilati, and M. Faccio, "Assembly system design in the Industry 4.0 era: a general framework," IFAC-PapersOnLine, vol. 50, no. 1, pp. 5700-5705, Jul., 2017, DOI: 10.1016/j.ifacol.2017.08.1121.
- L. Wang, R. Gao, J. Vancza, J. Krüger, X. V. Wang, S. Makris, and G. Chryssolouris, "Symbiotic human-robot collaborative assembly," CIRP Annals, vol. 68, no. 2, pp. 701-726, 2019, DOI: 10.1016/j.cirp.2019.05.002.
- S. Haddadin, A. De Luca, and A. Albu-Schaffer, "Robot Collisions: A Survey on Detection, Isolation, and Identification," IEEE Transactions on Robotics, vol. 33, no. 6, pp. 1292-1312, Dec., 2017, DOI: 10.1109/tro.2017.2723903.
- S. Robla-Gomez, V. M. Becerra, J. R. Llata, E. Gonzalez-Sarabia, C. Torre-Ferrero, and J. Perez-Oria, "Working Together: A Review on Safe Human-Robot Collaboration in Industrial Environments," IEEE Access, vol. 5, pp. 26754-26773, 2017, DOI: 10.1109/access.2017.2773127.
- S. D. Lee, M. C. Kim, and J. B. Song, "Sensorless collision detection for safe human-robot collaboration," 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015, DOI: 10.1109/iros.2015.7353701.
- P. Aivaliotis, S. Aivaliotis, C. Gkournelos, K. Kokkalis, G. Michalos, and S. Makris, "Power and force limiting on industrial robots for human-robot collaboration," Robotics and Computer-Integrated Manufacturing, vol. 59, pp. 346-360, Oct., 2019, DOI: 10.1016/j.rcim.2019.05.001.
- Y. Tian, Z. Chen, T. Jia, A. Wang, and L. Li, "Sensorless collision detection and contact force estimation for collaborative robots based on torque observer," 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 2016, DOI: 10.1109/robio.2016.7866446.
- P. Cao, Y. Gan, and X. Dai, "Model-based sensorless robot collision detection under model uncertainties with a fast dynamics identification," International Journal of Advanced Robotic Systems, vol. 16, no. 3, p. 172988141985371, May, 2019, DOI: 10.1177/1729881419853713.
- J. Xiao, Q. Zhang, Y. Hong, G. Wang, and F. Zeng, "Collision detection algorithm for collaborative robots considering joint friction," International Journal of Advanced Robotic Systems, vol. 15, no. 4, p. 172988141878899, Jul., 2018, DOI: 10.1177/1729881418788992.
- E. Matsas, G. C. Vosniakos, and D. Batras, "Prototyping proactive and adaptive techniques for human-robot collaboration in manufacturing using virtual reality," Robotics and Computer-Integrated Manufacturing, vol. 50, pp. 168-180, Apr., 2018, DOI: 10.1016/j.rcim.2017.09.005.
- A. Mohammed, B. Schmidt, and L. Wang, "Active collision avoidance for human-robot collaboration driven by vision sensors," International Journal of Computer Integrated Manufacturing, vol. 30, no. 9, pp. 970-980, Dec., 2016, DOI: 10.1080/0951192x.2016.1268269.
- R. C. Luo and C. W. Kuo, "Intelligent Seven-DoF Robot With Dynamic Obstacle Avoidance and 3-D Object Recognition for Industrial Cyber-Physical Systems in Manufacturing Automation," Proceedings of the IEEE, vol. 104, no. 5, pp. 1102-1113, May, 2016, DOI: 10.1109/jproc.2015.2508598.
- J. Kim, A. Alspach, and K. Yamane, "3D printed soft skin for safe human-robot interaction," 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015, DOI: 10.1109/iros.2015.7353705.
- Y. Lou, J. Wei, and S. Song, "Design and Optimization of a Joint Torque Sensor for Robot Collision Detection," IEEE Sensors Journal, vol. 19, no. 16, pp. 6618-6627, Aug., 2019, DOI: 10.1109/jsen.2019.2912810.
- Y. J. Heo, D. Kim, W. Lee, H. Kim, J. Park, and W. K. Chung, "Collision Detection for Industrial Collaborative Robots: A Deep Learning Approach," IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 740-746, Apr., 2019, DOI: 10.1109/lra.2019.2893400.
- A. De Luca and L. Ferrajoli, "A modified newton-euler method for dynamic computations in robot fault detection and control," 2009 IEEE International Conference on Robotics and Automation, Apr., 2019, DOI: 10.1109/lra.2019.2893400.
- L. Jiang, Z. Cai, D. Wang, and S. Jiang, "Survey of Improving K-Nearest-Neighbor for Classification," Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), Haikou, China, 2007, DOI: 10.1109/fskd.2007.552.
- A. P. Pawlovsky, "An ensemble based on distances for a kNN method for heart disease diagnosis," 2018 International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, USA, 2018, DOI: 10.23919/elinfocom.2018.8330570.
- P. Schratz, J. Muenchow, E. Iturritxa, J. Richter, and A. Brenning, "Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data," Ecological Modelling, vol. 406, pp. 109-120, Aug., 2019, DOI: 10.1016/j.ecolmodel.2019.06.002.
- R. C. Barros, M. P. Basgalupp, A. C. P. L. F. de Carvalho, and A. A. Freitas, "A Survey of Evolutionary Algorithms for Decision-Tree Induction," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 3, pp. 291-312, Aug., 2019, DOI: 10.1016/j.ecolmodel.2019.06.002.
- R. G. Mantovani, T. Horvath, R. Cerri, J. Vanschoren, and A. C. P. L. F. de Carvalho, "Hyper-Parameter Tuning of a Decision Tree Induction Algorithm," 2016 5th Brazilian Conference on Intelligent Systems (BRACIS), Recife, Brazil, 2016, DOI: 10.1109/bracis.2016.018.
- M. Jaworski, P. Duda, and L. Rutkowski, "New Splitting Criteria for Decision Trees in Stationary Data Streams," IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 6, pp. 2516-2529, Jun., 2018, DOI: 10.1109/tnnls.2017.2698204.
- C. W. Hsu, and C. J. Lin, "A comparison of methods for multiclass support vector machines," IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 415-425, Mar., 2002, DOI: 10.1109/72.991427.
- L. M. He, X. B. Yang, and H. J. Lu, "A Comparison of Support Vector Machines Ensemble for Classification," 2007 International Conference on Machine Learning and Cybernetics, Hong Kong, China, 2007, DOI: 10.1109/icmlc.2007.4370773.
- T. Hastie, R. Tibshirani, and J. Friedman and J. Franklin, "Support Vector Machines and Flexible Discriminants," The Elements of Statistical Learning, Springer, 2009, ch. 12, sec. 2, pp 417-421, DOI: 10.1007/978-0-387-84858-7_12.
- E. Duarte and J. Wainer, "Empirical comparison of crossvalidation and internal metrics for tuning SVM hyperparameters," Pattern Recognition Letters, vol. 88, pp. 6-11, Mar., 2017, DOI: 10.1016/j.patrec.2017.01.007.
- Y. Zhang and Y. Yang, "Cross-validation for selecting a model selection procedure," Journal of Econometrics, vol. 187, no. 1, pp. 95-112, Jul., 2015, DOI: 10.1016/j.jeconom.2015.02.006.
- J. D. Rodriguez, A. Perez, and J. A. Lozano, "Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 3, pp. 569-575, Mar., 2010, DOI: 10.1109/tpami.2009.187.
- S. Yadav and S. Shukla, "Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification," 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 2016, DOI: 10.1109/iacc.2016.25.
- X. Deng, Q. Liu, Y. Deng, and S. Mahadevan, "An improved method to construct basic probability assignment based on the confusion matrix for classification problem," Information Sciences, vol. 340-341, pp. 250-261, May, 2016, DOI: 10.1016/j.ins.2016.01.033.
- M. Sokolova and G. Lapalme, "A systematic analysis of performance measures for classification tasks," Information Processing & Management, vol. 45, no. 4, pp. 427-437, Jul., 2009, DOI: 10.1016/j.ipm.2009.03.002.
Cited by
- Uncertainty-Aware Knowledge Distillation for Collision Identification of Collaborative Robots vol.21, pp.19, 2021, https://doi.org/10.3390/s21196674