DOI QR코드

DOI QR Code

A Comparative Study on Collision Detection Algorithms based on Joint Torque Sensor using Machine Learning

기계학습을 이용한 Joint Torque Sensor 기반의 충돌 감지 알고리즘 비교 연구

  • Jo, Seonghyeon (Kyungpook National University) ;
  • Kwon, Wookyong (Daegu-Gyeongbuk research center, Electronics and Telecommunications Research Institute (ETRI))
  • Received : 2020.01.22
  • Accepted : 2020.02.21
  • Published : 2020.05.31

Abstract

This paper studied the collision detection of robot manipulators for safe collaboration in human-robot interaction. Based on sensor-based collision detection, external torque is detached from subtracting robot dynamics. To detect collision using joint torque sensor data, a comparative study was conducted using data-based machine learning algorithm. Data was collected from the actual 3 degree-of-freedom (DOF) robot manipulator, and the data was labeled by threshold and handwork. Using support vector machine (SVM), decision tree and k-nearest neighbors KNN method, we derive the optimal parameters of each algorithm and compare the collision classification performance. The simulation results are analyzed for each method, and we confirmed that by an optimal collision status detection model with high prediction accuracy.

Keywords

References

  1. M. Bortolini, E. Ferrari, M. Gamberi, F. Pilati, and M. Faccio, "Assembly system design in the Industry 4.0 era: a general framework," IFAC-PapersOnLine, vol. 50, no. 1, pp. 5700-5705, Jul., 2017, DOI: 10.1016/j.ifacol.2017.08.1121.
  2. L. Wang, R. Gao, J. Vancza, J. Krüger, X. V. Wang, S. Makris, and G. Chryssolouris, "Symbiotic human-robot collaborative assembly," CIRP Annals, vol. 68, no. 2, pp. 701-726, 2019, DOI: 10.1016/j.cirp.2019.05.002.
  3. S. Haddadin, A. De Luca, and A. Albu-Schaffer, "Robot Collisions: A Survey on Detection, Isolation, and Identification," IEEE Transactions on Robotics, vol. 33, no. 6, pp. 1292-1312, Dec., 2017, DOI: 10.1109/tro.2017.2723903.
  4. S. Robla-Gomez, V. M. Becerra, J. R. Llata, E. Gonzalez-Sarabia, C. Torre-Ferrero, and J. Perez-Oria, "Working Together: A Review on Safe Human-Robot Collaboration in Industrial Environments," IEEE Access, vol. 5, pp. 26754-26773, 2017, DOI: 10.1109/access.2017.2773127.
  5. S. D. Lee, M. C. Kim, and J. B. Song, "Sensorless collision detection for safe human-robot collaboration," 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015, DOI: 10.1109/iros.2015.7353701.
  6. P. Aivaliotis, S. Aivaliotis, C. Gkournelos, K. Kokkalis, G. Michalos, and S. Makris, "Power and force limiting on industrial robots for human-robot collaboration," Robotics and Computer-Integrated Manufacturing, vol. 59, pp. 346-360, Oct., 2019, DOI: 10.1016/j.rcim.2019.05.001.
  7. Y. Tian, Z. Chen, T. Jia, A. Wang, and L. Li, "Sensorless collision detection and contact force estimation for collaborative robots based on torque observer," 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 2016, DOI: 10.1109/robio.2016.7866446.
  8. P. Cao, Y. Gan, and X. Dai, "Model-based sensorless robot collision detection under model uncertainties with a fast dynamics identification," International Journal of Advanced Robotic Systems, vol. 16, no. 3, p. 172988141985371, May, 2019, DOI: 10.1177/1729881419853713.
  9. J. Xiao, Q. Zhang, Y. Hong, G. Wang, and F. Zeng, "Collision detection algorithm for collaborative robots considering joint friction," International Journal of Advanced Robotic Systems, vol. 15, no. 4, p. 172988141878899, Jul., 2018, DOI: 10.1177/1729881418788992.
  10. E. Matsas, G. C. Vosniakos, and D. Batras, "Prototyping proactive and adaptive techniques for human-robot collaboration in manufacturing using virtual reality," Robotics and Computer-Integrated Manufacturing, vol. 50, pp. 168-180, Apr., 2018, DOI: 10.1016/j.rcim.2017.09.005.
  11. A. Mohammed, B. Schmidt, and L. Wang, "Active collision avoidance for human-robot collaboration driven by vision sensors," International Journal of Computer Integrated Manufacturing, vol. 30, no. 9, pp. 970-980, Dec., 2016, DOI: 10.1080/0951192x.2016.1268269.
  12. R. C. Luo and C. W. Kuo, "Intelligent Seven-DoF Robot With Dynamic Obstacle Avoidance and 3-D Object Recognition for Industrial Cyber-Physical Systems in Manufacturing Automation," Proceedings of the IEEE, vol. 104, no. 5, pp. 1102-1113, May, 2016, DOI: 10.1109/jproc.2015.2508598.
  13. J. Kim, A. Alspach, and K. Yamane, "3D printed soft skin for safe human-robot interaction," 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 2015, DOI: 10.1109/iros.2015.7353705.
  14. Y. Lou, J. Wei, and S. Song, "Design and Optimization of a Joint Torque Sensor for Robot Collision Detection," IEEE Sensors Journal, vol. 19, no. 16, pp. 6618-6627, Aug., 2019, DOI: 10.1109/jsen.2019.2912810.
  15. Y. J. Heo, D. Kim, W. Lee, H. Kim, J. Park, and W. K. Chung, "Collision Detection for Industrial Collaborative Robots: A Deep Learning Approach," IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 740-746, Apr., 2019, DOI: 10.1109/lra.2019.2893400.
  16. A. De Luca and L. Ferrajoli, "A modified newton-euler method for dynamic computations in robot fault detection and control," 2009 IEEE International Conference on Robotics and Automation, Apr., 2019, DOI: 10.1109/lra.2019.2893400.
  17. L. Jiang, Z. Cai, D. Wang, and S. Jiang, "Survey of Improving K-Nearest-Neighbor for Classification," Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), Haikou, China, 2007, DOI: 10.1109/fskd.2007.552.
  18. A. P. Pawlovsky, "An ensemble based on distances for a kNN method for heart disease diagnosis," 2018 International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, USA, 2018, DOI: 10.23919/elinfocom.2018.8330570.
  19. P. Schratz, J. Muenchow, E. Iturritxa, J. Richter, and A. Brenning, "Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data," Ecological Modelling, vol. 406, pp. 109-120, Aug., 2019, DOI: 10.1016/j.ecolmodel.2019.06.002.
  20. R. C. Barros, M. P. Basgalupp, A. C. P. L. F. de Carvalho, and A. A. Freitas, "A Survey of Evolutionary Algorithms for Decision-Tree Induction," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 3, pp. 291-312, Aug., 2019, DOI: 10.1016/j.ecolmodel.2019.06.002.
  21. R. G. Mantovani, T. Horvath, R. Cerri, J. Vanschoren, and A. C. P. L. F. de Carvalho, "Hyper-Parameter Tuning of a Decision Tree Induction Algorithm," 2016 5th Brazilian Conference on Intelligent Systems (BRACIS), Recife, Brazil, 2016, DOI: 10.1109/bracis.2016.018.
  22. M. Jaworski, P. Duda, and L. Rutkowski, "New Splitting Criteria for Decision Trees in Stationary Data Streams," IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 6, pp. 2516-2529, Jun., 2018, DOI: 10.1109/tnnls.2017.2698204.
  23. C. W. Hsu, and C. J. Lin, "A comparison of methods for multiclass support vector machines," IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 415-425, Mar., 2002, DOI: 10.1109/72.991427.
  24. L. M. He, X. B. Yang, and H. J. Lu, "A Comparison of Support Vector Machines Ensemble for Classification," 2007 International Conference on Machine Learning and Cybernetics, Hong Kong, China, 2007, DOI: 10.1109/icmlc.2007.4370773.
  25. T. Hastie, R. Tibshirani, and J. Friedman and J. Franklin, "Support Vector Machines and Flexible Discriminants," The Elements of Statistical Learning, Springer, 2009, ch. 12, sec. 2, pp 417-421, DOI: 10.1007/978-0-387-84858-7_12.
  26. E. Duarte and J. Wainer, "Empirical comparison of crossvalidation and internal metrics for tuning SVM hyperparameters," Pattern Recognition Letters, vol. 88, pp. 6-11, Mar., 2017, DOI: 10.1016/j.patrec.2017.01.007.
  27. Y. Zhang and Y. Yang, "Cross-validation for selecting a model selection procedure," Journal of Econometrics, vol. 187, no. 1, pp. 95-112, Jul., 2015, DOI: 10.1016/j.jeconom.2015.02.006.
  28. J. D. Rodriguez, A. Perez, and J. A. Lozano, "Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 3, pp. 569-575, Mar., 2010, DOI: 10.1109/tpami.2009.187.
  29. S. Yadav and S. Shukla, "Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification," 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 2016, DOI: 10.1109/iacc.2016.25.
  30. X. Deng, Q. Liu, Y. Deng, and S. Mahadevan, "An improved method to construct basic probability assignment based on the confusion matrix for classification problem," Information Sciences, vol. 340-341, pp. 250-261, May, 2016, DOI: 10.1016/j.ins.2016.01.033.
  31. M. Sokolova and G. Lapalme, "A systematic analysis of performance measures for classification tasks," Information Processing & Management, vol. 45, no. 4, pp. 427-437, Jul., 2009, DOI: 10.1016/j.ipm.2009.03.002.

Cited by

  1. Uncertainty-Aware Knowledge Distillation for Collision Identification of Collaborative Robots vol.21, pp.19, 2021, https://doi.org/10.3390/s21196674