• Title/Summary/Keyword: KNN Model

Search Result 98, Processing Time 0.015 seconds

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (부도예측을 위한 KNN 앙상블 모형의 동시 최적화)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.139-157
    • /
    • 2016
  • Bankruptcy involves considerable costs, so it can have significant effects on a country's economy. Thus, bankruptcy prediction is an important issue. Over the past several decades, many researchers have addressed topics associated with bankruptcy prediction. Early research on bankruptcy prediction employed conventional statistical methods such as univariate analysis, discriminant analysis, multiple regression, and logistic regression. Later on, many studies began utilizing artificial intelligence techniques such as inductive learning, neural networks, and case-based reasoning. Currently, ensemble models are being utilized to enhance the accuracy of bankruptcy prediction. Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving the generalization ability of the classifier. Base classifiers in the ensemble must be as accurate and diverse as possible in order to enhance the generalization ability of an ensemble model. Commonly used methods for constructing ensemble classifiers include bagging, boosting, and random subspace. The random subspace method selects a random feature subset for each classifier from the original feature space to diversify the base classifiers of an ensemble. Each ensemble member is trained by a randomly chosen feature subspace from the original feature set, and predictions from each ensemble member are combined by an aggregation method. The k-nearest neighbors (KNN) classifier is robust with respect to variations in the dataset but is very sensitive to changes in the feature space. For this reason, KNN is a good classifier for the random subspace method. The KNN random subspace ensemble model has been shown to be very effective for improving an individual KNN model. The k parameter of KNN base classifiers and selected feature subsets for base classifiers play an important role in determining the performance of the KNN ensemble model. However, few studies have focused on optimizing the k parameter and feature subsets of base classifiers in the ensemble. This study proposed a new ensemble method that improves upon the performance KNN ensemble model by optimizing both k parameters and feature subsets of base classifiers. A genetic algorithm was used to optimize the KNN ensemble model and improve the prediction accuracy of the ensemble model. The proposed model was applied to a bankruptcy prediction problem by using a real dataset from Korean companies. The research data included 1800 externally non-audited firms that filed for bankruptcy (900 cases) or non-bankruptcy (900 cases). Initially, the dataset consisted of 134 financial ratios. Prior to the experiments, 75 financial ratios were selected based on an independent sample t-test of each financial ratio as an input variable and bankruptcy or non-bankruptcy as an output variable. Of these, 24 financial ratios were selected by using a logistic regression backward feature selection method. The complete dataset was separated into two parts: training and validation. The training dataset was further divided into two portions: one for the training model and the other to avoid overfitting. The prediction accuracy against this dataset was used to determine the fitness value in order to avoid overfitting. The validation dataset was used to evaluate the effectiveness of the final model. A 10-fold cross-validation was implemented to compare the performances of the proposed model and other models. To evaluate the effectiveness of the proposed model, the classification accuracy of the proposed model was compared with that of other models. The Q-statistic values and average classification accuracies of base classifiers were investigated. The experimental results showed that the proposed model outperformed other models, such as the single model and random subspace ensemble model.

Image Classification of Thyroid Ultrasound Nodules using Machine Learning and GLCM (머신러닝과 GLCM을 이용하여 갑상샘 초음파영상의 결절분류에 관한 연구)

  • Ye-Na Jung;Soo-Young Ye
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.4
    • /
    • pp.317-325
    • /
    • 2024
  • This study aimed to classify normal and nodule images in thyroid ultrasound images using GLCM and machine learning. The research was conducted on 600 patients who visited S Hospital in Busan and were diagnosed with thyroid nodules using thyroid ultrasound. In the thyroid ultrasound images, the ROI was set to a size of 50x50 pixels, and 21 parameters and 4 angles were used with GLCM to analyze the normal thyroid patterns and thyroid nodule patterns. The analyzed data was used to distinguish between normal and nodule diagnostic results using the SVM model and KNN model in MATLAB. As a result, the accuracy of the thyroid nodule classification rate was 94% for SVM model and 91% for the KNN model. Both models showed an accuracy of over 90%, indicating that the classification rate is excellent when using machine learning for the classification of normal thyroid and thyroid nodules. In the ROC curve, the ROC curve for the SVM model was generally higher compared to the KNN model, indicating that the SVM model has higher within-sample performance than the KNN model. Based on these results, the SVM model showed high accuracy in diagnosing thyroid nodules. This result can be used as basic data for future research as an auxiliary tool for medical diagnosis and is expected to contribute to the qualitative improvement of medical services through machine learning technology.

Development of a Personalized Music Recommendation System Using MBTI Personality Types and KNN Algorithm

  • Chun-Ok Jang
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.3
    • /
    • pp.427-433
    • /
    • 2024
  • This study aims to develop a personalized music digital therapeutic based on MBTI personality types and apply it to depression treatment. In the data collection stage, participants' MBTI personality types and music preferences were surveyed to build a database, which was then preprocessed as input data for the KNN model. The KNN model calculates the distance between personality types using Euclidean distance and recommends music suitable for the user's MBTI type based on the nearest K neighbors' data. The developed system was tested with new participants, and the system and algorithm were improved based on user feedback. In the final validation stage, the system's effectiveness in alleviating depression was evaluated. The results showed that the MBTI personality type-based music recommendation system provides a personalized music therapy experience, positively impacting emotional stability and stress reduction. This study suggests the potential of nonpharmacological treatments and demonstrates that a personalized treatment experience can offer more effective and safer methods for treating depression.

A Study on Automatic Missing Value Imputation Replacement Method for Data Processing in Digital Data (디지털 데이터에서 데이터 전처리를 위한 자동화된 결측 구간 대치 방법에 관한 연구)

  • Kim, Jong-Chan;Sim, Chun-Bo;Jung, Se-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.245-254
    • /
    • 2021
  • We proposed the research on an analysis and prediction model that allows the identification of outliers or abnormality in the data followed by effective and rapid imputation of missing values was conducted. This model is expected to analyze efficiently the problems in the data based on the calibrated raw data. As a result, a system that can adequately utilize the data was constructed by using the introduced KNN + MLE algorithm. With this algorithm, the problems in some of the existing KNN-based missing data imputation algorithms such as ignoring the missing values in some data sections or discarding normal observations were effectively addressed. A comparative evaluation was performed between the existing imputation approaches such as K-means, KNN, MEI, and MI as well as the data missing mechanisms including MCAR, MAR, and NI to check the effectiveness/efficiency of the proposed algorithm, and its superiority in all aspects was confirmed.

A Hybrid Model for Android Malware Detection using Decision Tree and KNN

  • Sk Heena Kauser;V.Maria Anu
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.186-192
    • /
    • 2023
  • Malwares are becoming a major problem nowadays all around the world in android operating systems. The malware is a piece of software developed for harming or exploiting certain other hardware as well as software. The term Malware is also known as malicious software which is utilized to define Trojans, viruses, as well as other kinds of spyware. There have been developed many kinds of techniques for protecting the android operating systems from malware during the last decade. However, the existing techniques have numerous drawbacks such as accuracy to detect the type of malware in real-time in a quick manner for protecting the android operating systems. In this article, the authors developed a hybrid model for android malware detection using a decision tree and KNN (k-nearest neighbours) technique. First, Dalvik opcode, as well as real opcode, was pulled out by using the reverse procedure of the android software. Secondly, eigenvectors of sampling were produced by utilizing the n-gram model. Our suggested hybrid model efficiently combines KNN along with the decision tree for effective detection of the android malware in real-time. The outcome of the proposed scheme illustrates that the proposed hybrid model is better in terms of the accurate detection of any kind of malware from the Android operating system in a fast and accurate manner. In this experiment, 815 sample size was selected for the normal samples and the 3268-sample size was selected for the malicious samples. Our proposed hybrid model provides pragmatic values of the parameters namely precision, ACC along with the Recall, and F1 such as 0.93, 0.98, 0.96, and 0.99 along with 0.94, 0.99, 0.93, and 0.99 respectively. In the future, there are vital possibilities to carry out more research in this field to develop new methods for Android malware detection.

On the use of weighted adaptive nearest neighbors for missing value imputation (가중 적응 최근접 이웃을 이용한 결측치 대치)

  • Yum, Yunjin;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.4
    • /
    • pp.507-516
    • /
    • 2018
  • Widely used among the various single imputation methods is k-nearest neighbors (KNN) imputation due to its robustness even when a parametric model such as multivariate normality is not satisfied. We propose a weighted adaptive nearest neighbors imputation method that combines the adaptive nearest neighbors imputation method that accounts for the local features of the data in the KNN imputation method and weighted k-nearest neighbors method that are less sensitive to extreme value or outlier among k-nearest neighbors. We conducted a Monte Carlo simulation study to compare the performance of the proposed imputation method with previous imputation methods.

K Nearest Neighbor Joins for Big Data Processing based on Spark (Spark 기반 빅데이터 처리를 위한 K-최근접 이웃 연결)

  • JIAQI, JI;Chung, Yeongjee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1731-1737
    • /
    • 2017
  • K Nearest Neighbor Join (KNN Join) is a simple yet effective method in machine learning. It is widely used in small dataset of the past time. As the number of data increases, it is infeasible to run this model on an actual application by a single machine due to memory and time restrictions. Nowadays a popular batch process model called MapReduce which can run on a cluster with a large number of computers is widely used for large-scale data processing. Hadoop is a framework to implement MapReduce, but its performance can be further improved by a new framework named Spark. In the present study, we will provide a KNN Join implement based on Spark. With the advantage of its in-memory calculation capability, it will be faster and more effective than Hadoop. In our experiments, we study the influence of different factors on running time and demonstrate robustness and efficiency of our approach.

Behavior and Script Similarity-Based Cryptojacking Detection Framework Using Machine Learning (머신러닝을 활용한 행위 및 스크립트 유사도 기반 크립토재킹 탐지 프레임워크)

  • Lim, EunJi;Lee, EunYoung;Lee, IlGu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1105-1114
    • /
    • 2021
  • Due to the recent surge in popularity of cryptocurrency, the threat of cryptojacking, a malicious code for mining cryptocurrencies, is increasing. In particular, web-based cryptojacking is easy to attack because the victim can mine cryptocurrencies using the victim's PC resources just by accessing the website and simply adding mining scripts. The cryptojacking attack causes poor performance and malfunction. It can also cause hardware failure due to overheating and aging caused by mining. Cryptojacking is difficult for victims to recognize the damage, so research is needed to efficiently detect and block cryptojacking. In this work, we take representative distinct symptoms of cryptojacking as an indicator and propose a new architecture. We utilized the K-Nearst Neighbors(KNN) model, which trained computer performance indicators as behavior-based dynamic analysis techniques. In addition, a K-means model, which trained the frequency of malicious script words for script similarity-based static analysis techniques, was utilized. The KNN model had 99.6% accuracy, and the K-means model had a silhouette coefficient of 0.61 for normal clusters.

KNN-Based Automatic Cropping for Improved Threat Object Recognition in X-Ray Security Images

  • Dumagpi, Joanna Kazzandra;Jung, Woo-Young;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1134-1139
    • /
    • 2019
  • One of the most important applications of computer vision algorithms is the detection of threat objects in x-ray security images. However, in the practical setting, this task is complicated by two properties inherent to the dataset, namely, the problem of class imbalance and visual complexity. In our previous work, we resolved the class imbalance problem by using a GAN-based anomaly detection to balance out the bias induced by training a classification model on a non-practical dataset. In this paper, we propose a new method to alleviate the visual complexity problem by using a KNN-based automatic cropping algorithm to remove distracting and irrelevant information from the x-ray images. We use the cropped images as inputs to our current model. Empirical results show substantial improvement to our model, e.g. about 3% in the practical dataset, thus further outperforming previous approaches, which is very critical for security-based applications.

Hyperparameter Tuning Based Machine Learning classifier for Breast Cancer Prediction

  • Md. Mijanur Rahman;Asikur Rahman Raju;Sumiea Akter Pinky;Swarnali Akter
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.196-202
    • /
    • 2024
  • Currently, the second most devastating form of cancer in people, particularly in women, is Breast Cancer (BC). In the healthcare industry, Machine Learning (ML) is commonly employed in fatal disease prediction. Due to breast cancer's favorable prognosis at an early stage, a model is created to utilize the Dataset on Wisconsin Diagnostic Breast Cancer (WDBC). Conversely, this model's overarching axiom is to compare the effectiveness of five well-known ML classifiers, including Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), K-Nearest Neighbor (KNN), and Naive Bayes (NB) with the conventional method. To counterbalance the effect with conventional methods, the overarching tactic we utilized was hyperparameter tuning utilizing the grid search method, which improved accuracy, secondary precision, third recall, and finally the F1 score. In this study hyperparameter tuning model, the rate of accuracy increased from 94.15% to 98.83% whereas the accuracy of the conventional method increased from 93.56% to 97.08%. According to this investigation, KNN outperformed all other classifiers in terms of accuracy, achieving a score of 98.83%. In conclusion, our study shows that KNN works well with the hyper-tuning method. These analyses show that this study prediction approach is useful in prognosticating women with breast cancer with a viable performance and more accurate findings when compared to the conventional approach.