• Title/Summary/Keyword: KMA UM

Search Result 25, Processing Time 0.027 seconds

Performance Analysis of Simulation of Asian Dust Observed in 2010 by the all-Season Dust Forecasting Model, UM-ADAM2 (사계절 황사단기예측모델 UM-ADAM2의 2010년 황사 예측성능 분석)

  • Lee, Eun-Hee;Kim, Seungbum;Ha, Jong-Chul;Chun, Youngsin
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.245-257
    • /
    • 2012
  • The Asian dust (Hwangsa) forecasting model, Asian Dust Aerosol Model (ADAM) has been modified by using satelliate monitoring of surface vegetation, which enables to simulate dusts occuring not only in springtime but also for all-year-round period. Coupled with the Unified Model (UM), the operational weather forecasting model at KMA, UM-ADAM2 was implemented for operational dust forecasting since 2010, with an aid of development of Meteorology-Chemistry Interface Processor (MCIP) for usage UM. The performance analysis of the ADAM2 forecast was conducted with $PM_{10}$ concentrations observed at monitoring sites in the source regions in China and the downstream regions of Korea from March to December in 2010. It was found that the UM-ADAM2 model was able to simulate quite well Hwangsa events observed in spring and wintertime over Korea. In the downstream region of Korea, the starting and ending times of dust events were well-simulated, although the surface $PM_{10}$ concentration was slightly underestimated for some dust events. The general negative bias less than $35{\mu}g\;m^{3}$ in $PM_{10}$ is found and it is likely to be due to other fine aerosol species which is not considered in ADAM2. It is found that the correlation between observed and forecasted $PM_{10}$ concentration increases as forecasting time approaches, showing stably high correlation about 0.7 within 36 hr in forecasting time. This suggests the possibility that there is potential for the UM-ADAM2 model to be used as an operational Asian dust forecast model.

The development of 'night sky forecast'(별밤예보) for observatories in Chungbuk province based on KMA UM LDAPS model

  • Kwon, Sun-Beom;Jung, Byung-Woo;Heo, Bok-Haeng;Ha, Chang-Hwan;Yoon, Joh-Na
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.70.3-70.3
    • /
    • 2017
  • 맑은 날에도 엷은 상층운이나 난류의 방해로 관측 품질이 저해되는 등 천문 분야는 대기환경에 민감하나, 하층 대기 상태에 비중을 두는 동네예보만으로는 천문 분야의 기상정보에 대한 수요를 충족하기에는 한계가 있다. 이에 천문 관측 환경에 보다 특화된 별밤예보를 개발하여 천체 관측 가능성과 천문 관측 자료의 품질을 좌우하는 대기상태를 UM 국지모델 생산자료를 바탕으로 예보하고자 한다. 예보 요소는 하늘상태(운량), 시상(seeing), 투명도, 암도(darkness) 및 대기청명지수, 풍속, 기온, 습도이다. 대기청명지수는 일반인이 관찰하기 좋은지 여부를 한 눈에 알 수 있게 운량과 투명도, 암도를 종합한 지수로 10~100까지 10단계로 제공할 계획이다. 하늘상태와 풍속, 기온, 습도는 $5{\times}5km$격자마다 제공되는 기상청 동네예보에서 천문대와 가장 가까운 격자의 예보치를 추출하였다. 시상은 대기의 난류 정도에 좌우된다. 그러나 충북의 고층기상 관측자료가 없어서, 시상 예보식을 만들기 위해 UM 국지모델에서 제공하는 각 등압면의 기온과 바람벡터로부터 정적 안정도(온위 경도)와 연직 바람시어를 유도한 뒤, 다중회귀분석으로 시상 예보식을 구하였다. 또한 대기청명지수는 청주기상지청에서 관측한 운량과 밤하늘 밝기 자료를 종속변수, 별의 개수를 독립변수로 하는 다중회귀예측식을 구하였다.

  • PDF

Performance Assessment of Weekly Ensemble Prediction Data at Seasonal Forecast System with High Resolution (고해상도 장기예측시스템의 주별 앙상블 예측자료 성능 평가)

  • Ham, Hyunjun;Won, Dukjin;Lee, Yei-sook
    • Atmosphere
    • /
    • v.27 no.3
    • /
    • pp.261-276
    • /
    • 2017
  • The main objectives of this study are to introduce Global Seasonal forecasting system version5 (GloSea5) of KMA and to evaluate the performance of ensemble prediction of system. KMA has performed an operational seasonal forecast system which is a joint system between KMA and UK Met office since 2014. GloSea5 is a fully coupled global climate model which consists of atmosphere (UM), ocean (NEMO), land surface (JULES) and sea ice (CICE) components through the coupler OASIS. The model resolution, used in GloSea5, is N216L85 (~60 km in mid-latitudes) in the atmosphere and ORCA0.25L75 ($0.25^{\circ}$ on a tri-polar grid) in the ocean. In this research, we evaluate the performance of this system using by RMSE, Correlation and MSSS for ensemble mean values. The forecast (FCST) and hindcast (HCST) are separately verified, and the operational data of GloSea5 are used from 2014 to 2015. The performance skills are similar to the past study. For example, the RMSE of h500 is increased from 22.30 gpm of 1 week forecast to 53.82 gpm of 7 week forecast but there is a similar error about 50~53 gpm after 3 week forecast. The Nino Index of SST shows a great correlation (higher than 0.9) up to 7 week forecast in Nino 3.4 area. It can be concluded that GloSea5 has a great performance for seasonal prediction.

Forecast Sensitivity to Observations for High-Impact Weather Events in the Korean Peninsula (한반도에 발생한 위험 기상 사례에 대한 관측 민감도 분석)

  • Kim, SeHyun;Kim, Hyun Mee;Kim, Eun-Jung;Shin, Hyun-Cheol
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.171-186
    • /
    • 2013
  • Recently, the number of observations used in a data assimilation system is increasing due to the enormous amount of observations, including satellite data. However, it is not clear that all of these observations are always beneficial to the performance of the numerical weather prediction (NWP). Therefore, it is important to evaluate the effect of observations on these forecasts so that the observations can be used more usefully in NWP process. In this study, the adjoint-based Forecast Sensitivity to Observation (FSO) method with the KMA Unified Model (UM) is applied to two high-impact weather events which occurred in summer and winter in Korea in an effort to investigate the effects of observations on the forecasts of these events. The total dry energy norm is used as a response function to calculate the adjoint sensitivity. For the summer case, TEMP observations have the greatest total impact while BOGUS shows the greatest impact per observation for all of the 24-, 36-, and 48-hour forecasts. For the winter case, aircraft, ATOVS, and ESA have the greatest total impact for the 24-, 36-, and 48-hour forecasts respectively, while ESA has the greatest impact per observation. Most of the observation effects are horizontally located upwind or in the vicinity of the Korean peninsula. The fraction of beneficial observations is less than 50%, which is less than the results in previous studies. As an additional experiment, the total moist energy norm is used as a response function to measure the sensitivity of 24-hour forecast error to observations. The characteristics of the observation impact with the moist energy response function are generally similar to those with the dry energy response function. However, the ATOVS observations were found to be sensitive to the response function, showing a positive (a negative) effect on the forecast when using the dry (moist) norm for the summer case. For the winter case, the dry and moist energy norm experiments show very similar results because the adjoint of KMA UM does not calculate the specific humidity of ice properly such that the dry and moist energy norms are very similar except for the humidity in air that is very low in winter.

The Distribution of Total Ozone Amounts and Intercomparison of their characteristics Derived from the TOVS Observations over the Korean Peninsula (TOVS로 부터 도출한 한반도 부근의 전오존량 분포 및 그 특성 비교)

  • 정효상;주상원
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.23-31
    • /
    • 1995
  • The International TOVS(TIROS Operational Vertical Sounders) Process Package(ITPP-VI), which has been installed at Korea Meteorological Administration(KMA), is only for a global usage to need a surface data to generate atmospheric soundings and total ozone amount. If the initial input process in the ITTP-VI is not modified, it takes climatic surface data for producing sounding data and total ozone amount in general. KMA is trying to improve the quality of TOVS total ozone amount using real-time synoptoc observation in various ways instead of climatological data because this retrieved data in the new scheme for total ozone presently used at the KMA may critically provide to analyze the long-term trend of ozone structure over the Korean peninsula. Two cases in this study show that TOVS retrieved total ozone amounts used by synoptic surface observations can delineate more detailed ozone structures rather than those used by climate surface data. The distribution of TOVS retrieved ozone amount fields with the synoptic surface analyzed data(TOVS-GPV) show more in detail relatively than those with the climate data(TOVS-CLIMAT) as expected. In addition, the collocated inter-comparisons of TOVS-GPV with TOVS-CLIMAT, TOMS observations and Dobsometer observations are performed statistically. TOVS-GPV fields with TOMS observations show smaller bias relatively than TOVS-CLIMAT and also reduce the differences.

Bias Characteristics Analysis of Himawari-8/AHI Clear Sky Radiance Using KMA NWP Global Model (기상청 전구 수치예보모델을 활용한 Himawari-8/AHI 청천복사휘도 편차 특성 분석)

  • Kim, Boram;Shin, Inchul;Chung, Chu-Yong;Cheong, Seonghoon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1101-1117
    • /
    • 2018
  • The clear sky radiance (CSR) is one of the baseline products of the Himawari-8 which was launched on October, 2014. The CSR contributes to numerical weather prediction (NWP) accuracy through the data assimilation; especially water vapor channel CSR has good impact on the forecast in high level atmosphere. The focus of this study is the quality analysis of the CSR of the Himawari-8 geostationary satellite. We used the operational CSR (or clear sky brightness temperature) products in JMA (Japan Meteorological Agency) as observation data; for a background field, we employed the CSR simulated using the Radiative Transfer for TOVS (RTTOV) with the atmospheric state from the global model of KMA (Korea Meteorological Administration). We investigated data characteristics and analyzed observation minus background statistics of each channel with respect to regional and seasonal variability. Overall results for the analysis period showed that the water vapor channels (6.2, 6.9, and $7.3{\mu}m$) had a positive mean bias where as the window channels(10.4, 11.2, and $12.4{\mu}m$) had a negative mean bias. The magnitude of biases and Uncertainty result varied with the regional and the seasonal conditions, thus these should be taken into account when using CSR data. This study is helpful for the pre-processing of Himawari-8/Advanced Himawari Imager (AHI) CSR data assimilation. Furthermore, this study also can contribute to preparing for the utilization of products from the Geo-Kompsat-2A (GK-2A), which will be launched in 2018 by the National Meteorological Satellite Center (NMSC) of KMA.

Development and Evaluation of the High Resolution Limited Area Ensemble Prediction System in the Korea Meteorological Administration (기상청 고해상도 국지 앙상블 예측 시스템 구축 및 성능 검증)

  • Kim, SeHyun;Kim, Hyun Mee;Kay, Jun Kyung;Lee, Seung-Woo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.67-83
    • /
    • 2015
  • Predicting the location and intensity of precipitation still remains a main issue in numerical weather prediction (NWP). Resolution is a very important component of precipitation forecasts in NWP. Compared with a lower resolution model, a higher resolution model can predict small scale (i.e., storm scale) precipitation and depict convection structures more precisely. In addition, an ensemble technique can be used to improve the precipitation forecast because it can estimate uncertainties associated with forecasts. Therefore, NWP using both a higher resolution model and ensemble technique is expected to represent inherent uncertainties of convective scale motion better and lead to improved forecasts. In this study, the limited area ensemble prediction system for the convective-scale (i.e., high resolution) operational Unified Model (UM) in Korea Meteorological Administration (KMA) was developed and evaluated for the ensemble forecasts during August 2012. The model domain covers the limited area over the Korean Peninsula. The high resolution limited area ensemble prediction system developed showed good skill in predicting precipitation, wind, and temperature at the surface as well as meteorological variables at 500 and 850 hPa. To investigate which combination of horizontal resolution and ensemble member is most skillful, the system was run with three different horizontal resolutions (1.5, 2, and 3 km) and ensemble members (8, 12, and 16), and the forecasts from the experiments were evaluated. To assess the quantitative precipitation forecast (QPF) skill of the system, the precipitation forecasts for two heavy rainfall cases during the study period were analyzed using the Fractions Skill Score (FSS) and Probability Matching (PM) method. The PM method was effective in representing the intensity of precipitation and the FSS was effective in verifying the precipitation forecast for the high resolution limited area ensemble prediction system in KMA.

Data Assimilation Effect of Mobile Rawinsonde Observation using Unified Model Observing System Experiment during the Summer Intensive Observation Period in 2013 (2013년 여름철 집중관측동안 통합모델 관측시스템실험을 이용한 이동형 레윈존데 관측의 자료동화 효과)

  • Lim, Yun-Kyu;Song, Sang-Keun;Han, Sang-Ok
    • Journal of the Korean earth science society
    • /
    • v.35 no.4
    • /
    • pp.215-224
    • /
    • 2014
  • Data assimilation effect of mobile rawinsonde observation was evaluated using Unified Model (UM) with a Three-Dimensional Variational (3DVAR) data assimilation system during the intensive observation program of 2013 summer season (rainy season: 20 June-7 July 2013, heavy rain period: 8 July-30 July 2013). The analysis was performed by two sets of simulation experiments: (1) ConTroL experiment (CTL) with observation data provided by Korea Meteorological Administration (KMA) and (2) Observing System Experiment (OSE) including both KMA and mobile rawinsonde observation data. In the model verification during the rainy season, there were no distinctive differences for 500 hPa geopotential height, 850 hPa air temperature, and 300 hPa wind speed between CTL and OSE simulation due to data limitation (0000 and 1200 UTC only) at stationary rawinsonde stations. In contrast, precipitation verification using the hourly accumulated precipitation data of Automatic Synoptic Observation System (ASOS) showed that Equivalent Threat Score (ETS) of the OSE was improved by about 2% compared with that of the CTL. For cases having a positive effect of the OSE simulation, ETS of the OSE showed a significantly higher improvement (up to 41%) than that of the CTL. This estimation thus suggests that the use of mobile rawinsonde observation data using UM 3DVAR could be reasonable enough to assess the improvement of prediction accuracy.

Introduction of Hydrometeorological Services (수문기상 서비스 소개)

  • Kim, Min Ji;Ham, Hyun Jun;Park, Sang Ah;Oh, Tae Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.324-324
    • /
    • 2021
  • 2020년 우리나라 중부지역의 장마철('20.6.10.~8.16.) 기간이 54일로 1973년 전국적인 기상관측을 시작한 이래 가장 길었고, 장마철 전국강수량(686.9mm)은 역대 2위로(1위 '06년 699.1mm) 약 8,000여명의 수재민과 42명의 인명피해가 발생하였다. 이처럼 '이상기후'라 부르는 극한 기상 사건들인 홍수, 폭우, 폭염, 가뭄 등의 자연재해가 해마다 우리나라 포함 전 세계적으로 자주 발생하면서 수문기상 정보 관리 및 활용의 중요성 또한 점차 커지고 있다. 이를 위해 기상청에서는 일반국민과 물관리 관계기관(회원)의 편의와 자료의 활용 증진을 위해 유역별 수문기상 관측·예측 정보를 생산하여 서비스를 제공하고 있다(https://hydro.kma.go.kr). 수문기상 관측 정보는 유역별 면적강수량, 증발산량 등을 산출하여 GIS기반으로 실시간 자료와 2000년 이후 과거 관측강수량의 기간(월, 계절, 연)자료를 제공하며, 예측 자료는 초단기 수치 모델(KLAPS), 레이더(MAPLE), 수문기상 예측모델(UM3km), 한국형 수치 예보 모델(KIM)을 활용하고 있다.

  • PDF

A Comparative Study of the Atmospheric Boundary Layer Type in the Local Data Assimilation and Prediction System using the Data of Boseong Standard Weather Observatory (보성 표준기상관측소자료를 활용한 국지예보모델 대기경계층 유형 비교 연구)

  • Hwang, Sung Eun;Kim, Byeong-Taek;Lee, Young Tae;Shin, Seung Sook;Kim, Ki Hoon
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.504-513
    • /
    • 2021
  • Different physical processes, according to the atmospheric boundary layer types, were used in the Local Data Assimilation and Prediction System (LDAPS) of the Unified Model (UM) used by the Korea Meteorological Administration (KMA). Therefore, it is important to verify the atmospheric boundary layer types in the numerical model to improve the accuracy of the models performance. In this study, the atmospheric boundary layer types were verified using observational data. To classify the atmospheric boundary layer types, summer intensive observation data from radiosonde, flux observation instruments, Doppler wind Light Detection and Ranging(LIDAR) and ceilometer were used. A total number of 201 observation data points were analyzed over the course 61 days from June 18 to August 17, 2019. The most frequent types of differences between LDAPS and observed data were type 1 in LDAPS and type 2 in observed(each 53 times). And type 3 difference was observed in LDAPS and type 5 and 6 were observed 24 and 15 times, respectively. It was because of the simulation performance of the Cloud Physics such as that associated with the simulation of decoupled stratocumulus and cumulus cloud. Therefore, to improve the numerical model, cloud physics aspects should be considered in the atmospheric boundary layer type classification.